
Individual Project Module 

 

Project title 

An Investigation into Music-Oriented Software-Based Audio Signal Processing, 
Including Development of a Real-time Audio Application Using C++ 

 

Author 

Toby Newman 

 

Project tutor 

Ahmad Kharaz 

 

Programme of study  

BSc (Hons) Music Technology and Audio System Design 

Stage 3 

University of Derby 

April 2002 

 i 



Acknowledgements and Thanks 

 

Ahmad Kharaz for guidance (Personal tutor) 

Steinberg Staff 

Members of the Music DSP mailing list 

Members of the Steinberg 3rd Party Developers mailing list 

Natanya Ford for C++ assistance 

Ron Newman 

Duncan Werner for initial guidance 

 ii 



Abstract 

This study presents an in-depth investigation into the development of a series of 
audio applications based upon the Steinberg software development kit, detailing the 
methods used, and effectiveness of results achieved. Development culminates in an 
advanced ring modulation effect. 

A history of sound reproduction within the scope of the personal computer is 
presented, to allow the context of Steinberg’s host based system to be better 
understood. 

By studying computer-based music technology from first principles in Chapter 1, it is 
hoped that the reader will be more able to follow the more complicated topics 
covered in Chapter 2. 

In conclusion it is found that the host-based system, for which the advanced ring 
modulation effect is made, is a culmination of specific achievements and methods 
developed since “Music1”, the first music software, written in 1957. 

 iii



Table of Contents 

 

INDIVIDUAL PROJECT MODULE .......................................................................I 

1 LIST OF FIGURES OR ILLUSTRATIONS .................................................. 1 

2 NOTATION........................................................................................................ 2 

3 INTRODUCTION.............................................................................................. 5 
3.1 OVERVIEW .................................................................................................... 5 
3.2 LITERATURE REVIEW .................................................................................... 5 
3.3 METHODS OF INVESTIGATION ....................................................................... 6 

4 TERMS OF REFERENCE ............................................................................... 7 
4.1 INTRODUCTION.............................................................................................. 7 

Limitations ........................................................................................................... 7 
4.2 AIMS OF THE INVESTIGATION........................................................................ 7 

5 CONDUCT OF THE STUDY........................................................................... 8 
DOCUMENTS COLLECTED.......................................................................................... 8 

6 CHAPTER 1 - DOCUMENTATION OF THE TECHNOLOGICAL 
DEVELOPMENTS IN MUSIC-ORIENTED AND COMPUTER-BASED 
AUDIO SIGNAL PROCESSING TO DATE THAT HAVE ALLOWED 
CURRENT TECHNIQUES TO BE DEVELOPED ............................................... 9 

6.1.1 “Music1” - The first music software.................................................... 9 
6.1.2 Transistor technology brings faster, smaller computers ................... 10 
6.1.3 SID chips in the Commodore C64/128 .............................................. 11 
6.1.4 The PC Speaker.................................................................................. 12 
6.1.5 Soundcards......................................................................................... 13 
6.1.6 Wavetable Synthesis ........................................................................... 21 
6.1.7 Mellosoftron and the Software Wavetable. ........................................ 24 
6.1.8 Virtual Synthesisers............................................................................ 25 
6.1.9 Host – Based systems ......................................................................... 27 

7 CHAPTER 2 - USE THE STEINBERG SDK TO CREATE AN 
ADVANCED RING MODULATING PLUGIN FOR USE IN HOST-BASED 
SYSTEMS ................................................................................................................. 29 

PLUGIN FOUNDATIONS............................................................................................ 29 
7.1.1 Creating a *.dll .................................................................................. 29 
7.1.2 Inheriting Elements of the SDK ......................................................... 30 
7.1.3 GUI..................................................................................................... 30 

7.2 DEVELOPMENT OF PROPOSED APPLICATIONS............................................... 31 
7.2.1 Create a plugin that has no effect. ..................................................... 31 
7.2.2 Audio representation within the SDK ................................................ 33 
7.2.3 Create a sawtooth ring modulator ..................................................... 35 
7.2.4 Replacement of the sawtooth modulator with a sine wave ................ 40 
7.2.5 Add further control for the user ......................................................... 44 
7.2.6 Details of miscellaneous techniques and additions to code............... 46 

8 ANALYSIS AND DISCUSSION .................................................................... 49 

 iv 



8.1 SPECTROGRAPH TESTING ............................................................................ 49 
8.2 EFFICIENCY OF CODE................................................................................... 52 
8.3 USABILITY RESEARCH – COMMENTS .......................................................... 53 

9 IMPLICATIONS OF CHANGE .................................................................... 55 

Backwards compatibility.................................................................................... 55 
Software synthesis begins to replace it’s hardware counterpart ....................... 55 

10 CONCLUSIONS .......................................................................................... 56 

11 RECOMMENDATIONS............................................................................. 57 

12 REFERENCES............................................................................................. 58 

13 APPENDICES .............................................................................................. 60 
DATA SHEETS AND SPECIFICATIONS ....................................................................... 60 
13.2 SOURCE CODE............................................................................................. 62 
13.3 USABILITY RESEARCH WEBSITE CONTENT ................................................. 71 
13.4 USER FEEDBACK FROM USABILITY RESEARCH WEBSITE ............................ 71 

 

 v 



 

1 List of Figures or Illustrations 

Figure 1-1 Screenshot from "Orgue.exe", a PC-Speaker music application  p12 
Figure 1-2 Screenshot from V909  p15 
Figure 6-3 An example of a contemporary sequencer interface, Steinberg’s 
Cubase VST  

p16 

Figure 6-4 A screenshot from SNDREC.EXE  p18 
Figure 6-5 Screenshot from "FastTrackerII"  p20 
Figure 6-6 Size comparison of two identical-length 8 and 16 bit audio files  p20 
Figure 6-7 Only parts A and B were kept from the original sample  p22 
Figure 6-8 Part “B” was looped and faded, as shown here  p23 
Figure 6-9 Screenshot showing SimSynth’s controls  p25 
Figure 6-10 Screenshot showing VAZ's controls  p27 
Figure 7-1 Sonic Syndicate’s Orion default plugin GUI  p30 
Figure 7-2 Steinberg’s WaveLab default GUI  p30 
Figure 7-3 Steinberg's Cubase default GUI  p31 
Figure 7-4 Simplified model of a virtual mixing desk signal path  p32 
Figure 7-5 processReplacing source code for a plugin with no effect  p32 
Figure 7-6 Algorithm code used to test audio representation  p34 
Figure 7-7 Audio output from previous figure as displayed in a wave editor  p34 
Figure 7-8 A flowchart describing a sawtooth ring modulator algorithm  p35 
Figure 7-9 Sine wave input to the plugin  p37 
Figure 7-10 Sawtooth modulation signal  p37 
Figure 7-11 Anticipated output of plugin  p37 
Figure 7-12 processReplacing source code for a sawtooth ring modulator 
plugin operating at arbitrary frequencies  

p38 

Figure 7-13 Sketch to illustrate the division of a 1Hz wave period into 
individual samples  

p39 

Figure 7-14 Algorithm allowing specific modulation frequency selection.  p40 
Figure 7-16 Detail of a 1/2 period sine wave showing 1 errant sample  p41 
Figure 7-15 FFT comparing a pure sine tone with the wave displayed above  p41 
Figure 7-17 Flowchart detailing operation of a sine wave ring modulator 
algorithm  

p42 

Figure 7-18 A sine wave input to the plugin  p43 
Figure 7-19 A high frequency sine wave used to modulate the input wave  p43 
Figure 7-20 The resultant output of the plugin  p43 
Figure 7-21 Algorithm code for a sine wave ring modulator  p44 
Figure 7-22 Software Design for an LFO controlled Ring Modulator  p45 
Figure 7-23 Algorithm Source code written to implement an LFO 
controlled Ring Modulator  

p45 

Figure 7-24 Enumeration Technique  p47 
Figure 7-25 Usage of the "getParameterName" function  p48 
Figure 8-1 Spectrograph of the 5kHz test tone  p49 
Figure 8-2 Spectrograph of a 5kHz tone ring modulated by a 2.5kHz tone  p50 
Figure 8-3 Spectrograph of a 5kHz tone ring modulated by a 5kHz tone  p50 
Figure 8-4 Spectrograph showing adjustment of the LFO depth  p51 
Figure 8-5 Spectrograph showing changes in LFO frequency  p52 
Figure 8-6 Graph showing CPU usage against time  p53 

1 



 

2 Notation 

Algorithm 
A set of instructions that perform a function or solve a problem 

API 
Applications Programming Interface.  

CPU 
Central Processing Unit 

Digital Audio Data 
A series of discrete values used to store an approximation of an analogue waveform 

*.dll file 
Dynamic Link Library. Files ending with the extension *.dll contain data and 
functions that can be accessed by other applications “on-the-fly”.  

DSP 
Digital signal processing – the analysis and manipulation of digital data. Within the 
scope of this report, DSP is used to refer to digital audio data 

EQ 
Equalisation is the act of adjusting the sonic properties of a sound by attenuating or 
boosting the volume of specific frequencies or ranges of frequencies. 

FM 
“Frequency Modulation”, also referred to as 'frequency shift keying'. Modifying the 
frequency of one signal in proportion to the amplitude of another. (Boone, K. 2000 
[g]) 

GUI 
Graphical User Interface. 

IBM 
International Business Machines. “A multinational company, the largest 
manufacturer of computers in the world” (“Digital Oracle”, 2002 [e]) 

ISA 
“Industry Standard Architecture” is a format of upgrade slot found in home 
computers. 

MIDI 
Musical Instrument Digital Interface 

2 



 

“An international standard for communication between a musical instrument and a 
computer.” (MIDI and Digital Audio Terms, 2001 [h]) 

Modulation 
A method of encoding one signal onto a second “carrier” signal. 

Motherboard 
This is a large printed circuit board found in most home computers. It includes 
controller circuitry, and slots for the CPU or PCI and ISA cards. 

MSDOS 
'Microsoft disk operating system.' The original operating system for IBM compatible 
PCs. 

OPL 
Abbreviated name for the Yamaha “Operator tyPe- L” chip used to FM synthesise on 
early ISA soundcards 

O/S 
Operating System: This is a piece of software that takes control of computer 
functions such as accessing disk drives, creating a GUI, and allocating memory. 
Other programs can then be loaded on top of the O/S and use features offered by it.  

Pascal 
An object oriented computer language that is very tightly structured to avoid messy 
code. 

PC 
Personal Computer; this term was used to refer to the original IBM computers 
launched in 1981. It can now be taken to mean any modern day computer compatible 
with IBM machines. 

PCI 
“Peripheral Component Interconnect”, the successor to ISA, this upgrade slot is 
faster and smaller. 

PIT 
Programmable Interval Timer. A chip found commonly on IBM compatible 
motherboards which can be controlled by software to generate signals at 
predetermined frequencies. 

RAM 
Random Access Memory. 

3 



 

Ring Modulation 
This is a type of amplitude modulation that creates two side bands whose frequencies 
are the sum and difference of the input and modulation frequency. It can be used 
musically to create harmonically complex metallic sounds.  

ROM 
Read Only Memory. 

Shareware 
Shareware is a method of licensing software on a “try before you buy” basis, often 
used by smaller development companies or individuals. 

SDK 
Software Development Kit; A package distributed to allow 3rd party developers 
create software for a particular platform. 

SID 
Sound Interface Device, name of the music chip used in Commodore’s C64/128 
range of computers 

Subtractive synthesis 
This is the process of creating a new sound from a source waveform rich in 
harmonics by the use of filters. 

UART 
“Universal Asynchronous Receiver Transmitter”; this is the chip in PCs that controls 
the serial port, a socket that allows communication with external devices. 

Virtual Memory 
Virtual memory is the simulation of system memory (solid state chips) by use of a 
computer hard disk. It is considerably slower than system memory, due to its reliance 
upon mechanical action rather than electromagnetic signals 

Wavetable 
“Wavetable - A series of numbers stored in memory that, when routed to a Digital-
to-Analogue converter, reconstruct a particular waveform. Wavetables can also be 
used to reconstruct samples of acoustic sounds.” (IAEKM, 1998 [i]) 

While Loop 
A C++ programming method of executing an instruction or set of instructions until a 
given condition is false. 

 

4 



 

3 Introduction 

3.1 Overview  
This report is submitted as a final year project for the degree course BSc(Hons) 
Music Technology and Audio System Design at Derby university. The report has 
been carried out over the period of 2001/2002. 

The issue under investigation is the development of a series of software audio 
applications to operate under Steinberg’s “VST” host-based system. 

The VST host system itself is detailed in Chapter 1 as a culmination of developments 
in computer based music-oriented technology. 

The issue’s importance lies in the speed at which it is being improved upon. The 
VST host is a very new technology, and as each new technology in this field is 
released, development is often already underway on improved systems with which to 
replace it. As such, there is little time to look back at the origins of contemporary 
systems, where such a retrospective can yield deeper understanding of current 
methods. 

3.2 Literature Review 
When carrying out research into the older areas of computer based music technology 
it was found that the richest source of background reading was through books such as 
Electronic Music Synthesis: Concepts, facilities, techniques, Howe, H.S. Junior. 
(1975). Since many of the earlier developments occurred before widespread use of 
the Internet, it is mainly in these types of volumes that the first steps into this new 
technology are documented. 

The more recent developments in the field of computer-based music technology are 
best investigated by studying current journals. Articles in Sound on Sound (SOS 
Publications Group) often discuss the more musical aspects of computer-based 
audio, and games development journals should not be ignored since they make use of 
many of the current computer-based music technologies. 

In order to successfully construct a software application it is important to be aware of 
protocols and methods by which this is best done. By observing strict development 
guidelines during early stages, problems caused by complicated applications can be 
avoided at later stages. An understanding of such practical software methods can be 
gained by reading Software Engineering, Ince, D.C., (1994), a book that details 
software planning techniques. 

While actually writing code it is essential to have some form of C++ reference. 
“Object Oriented programming with C++”, Parsons D.C. (2000) was referred to 
extensively when creating the applications included in this report. This book is 
recommended for reference since it covers object-oriented concepts, programming, 
analysis, and design. 

5 



 

3.3 Methods of Investigation  
The investigation is primarily intended to demonstrate the creation of a series of 
software applications, using one of the most modern technologies available to the 
third party music software developer: the Steinberg VST architecture. This practical 
element successfully displays the core benefits of many of the new technologies 
discussed in Chapter 1, where the history of development of computer-based music is 
documented. 

This project report is the culmination of the 3-year Music Technology and Audio 
System Design course offered at Derby University. It draws from many of the topics 
covered by the course, but primarily from Audio Applications Programming and 
Digital Signal Processing. 

6 



 

4 Terms of Reference 

4.1 Introduction 
This investigation is intended to give an understanding of how current computer-
based music technology has come to exist, and highlight specific improvements that 
this current technology offers. This is done via a realisation of a series of audio 
processing applications using current technology in chapter 2, in order to 
demonstrate the improvements documented during the retrospective of computer-
based music technology development in Chapter 1.  

Limitations 
Although technical terms are listed in “2 Notation”, and their usage has avoided 
where possible, some knowledge of music technology must be assumed due to the 
technical nature of the report. 

Due to the massive array of techniques involved in modern music technology, it has 
been necessary to make some omissions in order to focus on areas that are deemed 
most important. This has been avoided where possible. 

For deeper understanding of this report it is recommended that background reading 
be carried out. Texts referred to throughout the report are listed in (13) References 
and these form a good foundation from which to begin background reading. 

4.2 Aims of the Investigation 
• Develop a series of working audio applications using C++. This development 

will culminate in the creation of an advanced ring modulation plugin that 
offers LFO control over modulation frequency and depth. 

• Documentation of the main technological developments to date that have 
allowed current music-oriented and computer-based audio signal processing 
technologies to exist. 

 

7 



 

5 Conduct of the Study 

Documents Collected 
The study has been conducted by reference to literature available in multiple 
libraries. Also studied were music technology periodicals, which successfully offered 
“snapshots” of current technology, at the time of print. 

Due to the subject matter in focus, the richest source of information available was 
through various channels of the Internet. 

UseNet proved to be a rich source of information. There exists a large community of 
individuals, many of which are fanatical about music technology and are keen to 
divulge information regarding many areas of music technology. UseNet groups such 
as comp.music.research and comp.dsp offer a wide source of reference and aid. 

The World Wide Web allows access to many pages of information regarding both the 
development of music technology and methods involved in creating applications 
using contemporary technology. 

8 



 

6 Chapter 1 - Documentation of the technological developments in 

music-oriented and computer-based audio signal processing to 

date that have allowed current techniques to be developed 

This chapter is intended to give a foundation of knowledge with respect to the history 
of music development within the scope of computers. By investigating each of the 
developments in this area that have contributed to current systems, a deeper 
understanding is formed that will allow the reader to understand the processes 
detailed in the second chapter. 

Computers have become an increasingly common tool in music within the last 
twenty years. Recent years have seen a rapid development of various software 
packages and new application possibilities for computers in music related digital 
signal processing, recently culminating in real-time synthesis and real-time effects. 

The evolution of methods by which the home computer has been able to output 
sound in any practical form can be traced through its various development processes 

The scope of this report covers the use of computers as synthesis tools and audio 
effects units, and the production of music in multimedia applications such as 
computer entertainment.  

6.1.1 “Music1” - The first music software 
Early computers (pre 1970) were extremely slow when compared to current 
machines, and as such, they where incapable of creating any kind of musical sound 
in real time. 

Max Mathews created the first example of music software in 1957 while working for 
Bell Laboratories. Named “Music1”, it worked by running in batches, slowly 
generating audio data that was spooled onto mass storage such as tape. This data 
could then be fed to digital-analogue converters (D.A.C.s) to become audible.  

The Music1 software was updated to Music2 in 1958, and Music3 in 1960, each 
update carrying more functions than the last, including programmable digital 
wavetables, scoring, timbral variation, modularity and orchestration.  

When Mathews finished Music4 in the early sixties, he gave it to Princeton and 
Stanford universities where it was modified by Hubert Howe and Godfrey Winham 
to allow controllable envelopes; They also gave it a resonant filter command, and as 
such created the first software based subtractive synthesis system. 

Another alteration they made was to adapt it to use less IBM 7094 processing time 
by using BEFAP assembler, and subsequently named their version “Music4B”. 

In 1969, the IBM 7094 at Princeton was replaced by a newer machine, which meant 
that the BEFAP assembly code would no longer run.  

9 



 

As a result, the code was completely revised and designed for the newer machine. 
Speed has always been important in computer based music technology, and it was no 
different in 1969. Users of Music360 had to design their sounds using a laborious 
punch-card interface and there was no way to immediately hear the results of their 
labours. As such, any increase in speed shortened the trial-and-error sound 
development cycle and made practical application of the Music program much 
easier. 

It was at this time that the PDP-8 computer was being researched as a potential 
platform for real-time audio production. It was not until 1973 that Digital Equipment 
Corporation created the PDP-11 computer, dedicated to music, which was installed at 
Massachusetts Institute for Technology (M.I.T.) 

Subsequently, a new version of Music, “Music11”, was written for PDP-11 

Since this was a dedicated music machine, using code written in assembler (one of 
the most efficient computer languages), it was capable of real-time processing. A 
major breakthrough was the ability for it to be “played” by connecting it to a 
controller keyboard. Real time control simplified the task of creating sound on the 
Music platform by allowing the results of adjustments to be immediately heard. 

With such a leap forward in functionality Music11 remained the standard for almost 
ten years - until 1985. At this time, it became clear that brand new microprocessor 
technology would become realistically affordable soon, and that the very fast but un-
portable Music11 would become obsolete. 

Max Mathews writes of this development: “On returning to MIT in 1985 it was clear 
that microprocessors would eventually become the affordable machine power, that 
un-portable assembler code would lose it’s usefulness, and that ANSI C would 
become the lingua franca.”(Boulanger, 2000 [3]) 

C, a language used to run early versions of UNIX in 1973, became the new portable 
language of choice. Since these times, C has been augmented to create C++, now one 
of the most widespread computer languages available and the language used to create 
the advanced audio applications in Chapter 2 of this report. 

“Because C was developed as a tool for driving an operating system, it had certain 
characteristics such as speed, compactness, and some very low level 
elements.”(Parsons 2000 [1]) 

6.1.2 Transistor technology brings faster, smaller computers  
In 1975, concepts of music “minicomputers” where discussed that would be capable 
of fast execution, allowing the user to have “immediate feedback, so that a user could 
hear his music as soon as it was computed” (Howe H.S.1975 [5]) 

These, at the time, would have cost inordinate amounts of money: “It is possible, 
even likely, that such a system could probably be assembled for less than $100,000” 
(Howe H.S.1975 [5]) 

With improvements in transistor design technology, it became possible for computers 
to be made smaller, bought affordably and kept in the home, whereas before they 

10 



 

where unwieldy devices that would dominate one or more rooms and were only 
commonly found at universities and research laboratories. 

Prior to the present day consumer market dominance of primarily IBM compatibles, 
there became available a series of alternative types of computer available to the 
consumer. Commodore’s C64 and C128 where among the most commonly found, 
and these machines carried one of the most advanced computer-based sound 
generation chips available for many years to come: 

6.1.3 SID chips in the Commodore C64/128 
In 1981, Robert Yannes began work for Commodore on a microprocessor that could 
be placed in and controlled by a home computer. “I had worked with synthesizers 
and I wanted a chip like those in a synthesizer” Robert Yannes (1996) 

Within four or five months, the development was complete and the Sound Interface 
Device chip was ready to be used in Commodore’s computers. 

As stated in the Commodore 64 Programmer's Reference Guide: “SID provides 
wide-range, high-resolution control of pitch (frequency), tone color (harmonic 
content), and dynamics (volume). Specialized control circuitry minimizes software 
overhead, facilitating use in arcade/home video games and low-cost musical 
instruments.” (Alstrup, 1987 [b]) 

It is capable of producing three voices at any one time. Each voice can be used 
independently, for example as a snare sound, kick drum sound, and melody sound. 
These three voices can also be used in unison allowing complex waves to be 
constructed. 

The actual voices are very limited. Each of the three individually consists of an 8-bit 
wavetable based waveform generator, the output of which can be amplitude 
modulated using a programmable envelope. 

The waveform generator creates four signals (triangular, sawtooth, variable pulse-
width waves, or noise). The mixing of these signals together allows timbre of the 
output to be controlled. 

Using subtractive synthesis the signal can be altered further. This was done using the 
programmable filter included in the SID hardware, which had a cut-off range of 
between 30 Hz and 12 kHz, with a 12dB/octave roll-off. It was selectable between 
low pass, band-pass, high pass and notch, and had variable Resonance  

The chip could also accept audio input and process that using the same techniques 
described above. This allowed for multiple SID chips to be arranged in sequence to 
create more complex sounds. 

The result was a very electronic sound, but at that time, the sound of the SID chip 
proved to be a leap forward in imitation of real instruments at a scale that was 
affordable by the consumer. 

11 



 

The success was partially due to its microprocessor-controlled frequency selection, 
allowing precise frequency adjustments. This opens up possibilities of using 
techniques such as slight detuning of voices to create phasing effects. 

The new microprocessor-controlled envelope function also allowed closer mimicking 
of real instruments than that which had previously been possible in real time on such 
a small scale. 

International Business Machines (IBM) 
Many of the equivalent computers available at the time of the Commodore C64/128 
had similar sound generation chips but none offered the sharpness of tone or 
frequency accuracy of the SID chip. As such, this was the most advanced home 
computer-based music device available for some time, until the IBM compatible, 
began to develop from a mostly text-based machine into the multimedia devices 
common in offices and homes today.  

6.1.4 The PC Speaker  
Developed circa 1981, The PC Speaker was the first method by which the IBM 
compatible home computer issued sound. It was used to create music and primitive 
sound effects (such as rising pulse sweeps) and to emit beeps of acknowledgement to 
the actions of the user in other applications. 

The PC Speaker itself is simply a small drive unit attached to the inside of a 
computer case. 

It is usually wired directly to a jumper connection on the computer’s motherboard, 
although some soundcards such as the Terratec EWS64XL offer the alternative to 
transfer the signal from the motherboard to monitor s or Hi-fi speakers. 

Sound output of the PC Speaker “is controlled by the Programmable Peripheral 
Interface device 8255A© and the Programmable Interval Timer 8253© chips.” 
(Hilderink, G.H. 1998 [f]) 

The sound is produced very simply; Channel 2 (port 42h) of the 8255A chip on the 
motherboard is connected to the computer's speaker and issues “on/off” signals (i.e. 
square wave pulses) to create sounds. By altering the interval of the Programmable 
Interval Timer (PIT) chip, the programmer can change the sound frequency outputted 
at channel 2. 

In order to simulate the effect of a chord, it was necessary to quickly play the single 
notes of the desired chord in a rapid arpeggio, creating the illusion of polyphony. 

This method of producing sound has very low functionality. The user may only set 
the output frequency, and then turn the speaker on/off at that frequency. As such, the 
PC speaker was totally unsatisfactory for reproducing any form of realistic sound, 
and was restricted to electronic “beeps”. Since the development of better 
technologies, the PC Speaker has been disregarded for all sound applications with the 
exception of reporting critical system errors where all other more complex sound 
reproduction techniques cannot be relied upon to function correctly.  

12 



 

As the first step in creating sound from an IBM compatible personal computer, the 
PC speaker must not be ignored. However, as new technologies where developed, 
sound quality from the IBM platform was to increase dramatically. With regard to 
user-friendliness, an individual wishing to create music using the PC speaker would 
either have to code a solution themselves or use limited applications with little 
functionality and no polyphony such as “orgue.exe” created by J.H. Bass (1995, 
published at www.simtel.net) as seen here. 

Figure 6-1 Screenshot from "Orgue.exe", a PC-Speaker music application 

This application allows the user to play the PC speaker using the QWERTY 
keyboard but offers no timbre control or recording facility. There was very little 
software available which allowed the user to actually sequence musical recordings to 
be generated from within the computer itself, since the sound quality was so low that 
few people would have desired to do so at that time. 

6.1.5 Soundcards 

6.1.5.1 Adlib Music Synthesiser 
The next major improvement in computer-based audio technology, the “Adlib Music 
Synthesiser” became available in 1987 as an ISA card that could be plugged into 
IBM computers as an upgrade. This upgrade card was the first step away from the 
basic PC speaker sounds, and used the Yamaha YM3526 FM operator type- L (OPL) 
chip to generate an FM synthesis wave pattern to recreate basic instrument sounds. 

Polyphony was split between 9 melody voices or a combination of six melody voices 
and five rhythm voices. The FM sound generator was actually the same as the one 
used in the Yamaha DX-7 synthesizer, employing both a synthesizer and a noise 
generator, used to create five percussion sounds (bass drum, snare drum, high-hat 
cymbals, top cymbal, and tom-tom). 

The synthesizer allowed sound envelopes to be specified, and offered low frequency 
oscillators to control vibrato and amplitude modulation. 

Adlib became the most popular ISA soundcard available for home computing. The 
music created by computers and basic sequencers became greatly improved with a 

13 



 

departure from esoteric bleeps and buzzes and a valid attempt at real instrument 
emulation. 

The OPL chip became so popular that it was soon available across the majority of 
ISA soundcards, being added to Creative’s market leading “SoundBlaster” series of 
soundcards in 1989.  

This early OPL chip (YM3526) should not be confused with OPL2 (YM3812) or 
OPL3 (YMF262), both of which are developments of the OPL and offer greater 
functionality. 

OPL2 was the successor to the OPL chip, and was used on most “SoundBlaster” 1.x 
and 2.x cards. 

It has an improved maximum of two frequency modulation operators per voice and 
allows for up to nine simultaneous voices. With just two FM operators per voice, the 
OPL2’s timbres are still far from realistic. 

To follow was the OPL3 chip. This device was still an FM synthesiser, but its 
increased 4 operators per voice resulted in a less electronic and artificial sound. 

This OPL3 could also support up to 18 voices and generate stereo tones of up to 
44.1kHz. 

6.1.5.2 Computer-based music sequencer software packages 
The features of the OPL chips, coupled with the release of Windows 3.0 in May 
1990, beckoned the rise of computer-based MIDI sequencer software packages, the 
forerunners of today’s virtual studio environments. 

Windows 3.0, a graphical user interface designed by Microsoft to augment MSDOS, 
has the ability to access memory beyond 640K which allowed much more powerful 
software to be run on home computers, where before memory was a crippling 
restriction for developers. 

 With the instruments supplied by the OPL driven soundcards, and the possibilities 
given by the new operating system Windows 3.0, these sequencing applications 
allowed home users to create songs entirely on their PCs, with the possibilities of 
percussion, lead instruments, bass and many other timbres offered by the OPL FM 
synthesisers. 

14 



 
Figure 6-2 A screenshot from V909 

Early sequencer software was very primitive by today’s standards. One example of 
an early sequencer is V909, by Christopher List, shown here. 

This MIDI sequencer has no digital audio capability, and the pattern oriented user 
interface is less intuitive than modern timeline-oriented sequencers. 

This awkward user interface is typical of many of the sequencers available at the 
early 1990s, and is similar to the interfaces offered by the Tracker software discussed 
later in this report. (see Chapter 6.1.5.4, Page 18)  

As synthesis methods improved over time, sequencers began to adapt to take 
advantage of multitimbrality. The layout was modified from the mathematical tables 
of the *.MOD and grids of the V909 pattern sequencer, and became something closer 
to traditional music score. With newer sequencers, time is represented horizontally, 
and the vertical axis is divided up to denote different instruments, or timbres on a 
synthesiser. 

15 



 
Figure 6-3: An example of a contemporary sequencer interface, Steinberg’s Cubase VST 

 

Derivatives of this design are found in the majority of contemporary sequencer 
packages. 

6.1.5.3 Roland MT-32 
An alternative technology that was available at the time of the OPL chips was 
Roland’s MT-32 synthesiser. 

This was not a soundcard but an external box that connected to the computer via a 
“Musical Processing Unit, model 401” (MPU-401) ISA interface card, also designed 
by Roland. 

The MPU-401 
This MPU-401 card was the first MIDI interface designed for a computer. 

It carried many features such as a built in metronome, and a hardware tape-synch 
jack to allow the connection and synchronisation of a magnetic analogue tape 
recorder. 

It became such a widely used MIDI interface that Roland established a standard that 
many future soundcard companies would follow. The MPU-401 is now available as a 
single chip rather than a whole ISA card, and it is very common to find it included on 
contemporary soundcards. These chips are often marked as operating in UART 
mode, which means that they offer the midi interface functions without all the 
intelligent features such as built in metronome and tape-synch. 

An example of such a contemporary card is the Terratec EWS64XL, described as 
having “Two MPU-401© compatible MIDI interfaces (UART mode)” (Terratec 
1998[7]) 

Linear Arithmetic (LA) synthesis 
The MT-32 synthesiser, that was designed to connect to this MPU-401 MIDI 
interface, operated using Linear Arithmetic (LA) synthesis. 

16 



 

As a pre-cursor to the wavetable synthesis methods used today, LA synthesis was a 
combination of traditional additive synthesis and basic elements of wavetable 
synthesis. (See Section 6.1.6) 

Sample lengths where heavily restricted at the time of the MT-32, since memory was 
an expensive commodity, and digital audio samples are often very large, particularly 
by the standards of the early IBM compatibles. (10 seconds of stereo 44kHz digital 
audio data takes up 1,764,000 bytes of memory.) These early machines had just one 
megabyte of memory, of which 354K was assigned to system tasks, leaving only 
640K of memory available for applications. This meant that there was no room in 
system RAM to store lengthy audio samples. 

To avoid this problem, a compromise was made between realism and memory usage: 

LA Synthesis used very short samples of just the attack elements of instruments, and 
then augmented them with additive synthesised sustain and release sounds. This 
allowed for greater accuracy in timbre modelling than anything that had been 
achieved before using additive, subtractive or frequency modulated (FM) synthesis. 

Since only the attack portion was sampled, it required much less storage, allowing 
for hardware that came installed with less memory, greatly reducing production 
costs. 

6.1.5.4 Increased storage ability leads to more widespread use of 
digital audio 

As each year passed, computers became faster, and digital storage such as RAM and 
hard disks became larger and dramatically cheaper. Soon, it became viable for short 
sections of digital audio to be stored in virtual memory on hard disks, or even loaded 
into system RAM. 

SoundBlaster 
Since digital audio could now be stored within computers, the manufacturers of 
soundcards began including Digital to Analogue converters (D.A.C.s) on their 
products. 

The first soundcard generally available to offer this capability was Creative’s 
SoundBlaster. This card also came with an Analogue to Digital converter (A.D.C.) 
allowing line-level signals to be recorded to the hard disk. These recorded sounds 
would be stored in *.WAV files, a standard type of file created by the Microsoft 
Windows 3.0 operating system. As such, the SoundBlaster allowed the user to record 
and playback any real sound. 

The quality was poor by today’s standards. Samples where taken at only 8-bit and 
any sample rates above 22kHz would have taken up too much storage space when 
hard drives where commonly between 50 and 300mb. 

Once stored on the hard disk, digital audio could then be streamed using driver 
software through the D.A.C. and out of the computer as an analogue signal ready to 
be fed to an amplifier and speaker arrangement. 

17 



 

Front-end applications could then offer directory-browsing features with which to 
find audio files; the software would then operate by reading the stored digital audio 
data from the hard disk or memory, and communicate that audio to the soundcard 
using driver software, to produce sound. The early audio applications often included 
simple controls such as play, pause and stop, to facilitate the playback of audio files. 

An example of early digital audio playback software is SNDREC.EXE, a simple 
program that was bundled with Microsoft’s Windows 3.1. This software operated by 
loading digital audio from the hard disk into memory and then playing back said 
audio. It was also capable of receiving digital audio from a soundcard’s A.D.C. and 
storing that data on the hard disk in *.WAV format, as such, using the computer as a 
primitive sampler. 

Figure 6-4 A screenshot from SNDREC.EXE

 

MOD Format 
This low fidelity sampling capability spawned the creation of new software by third 
parties that allowed the samples to be both played back and sequenced or mixed. 
This software was termed the “Tracker”, and the primary file format that was used 
was the “*.MOD”. 

Tracker songs come in the form of one inclusive file which is played back using 
tracker software; that file includes both timing information like a MIDI file, and 
embedded digital audio sample information. 

“Modules are digital music files, made up of a set of samples (the instruments) and 
sequencing information, telling a mod player when to play which sample on which 
track at what pitch, optionally performing an effect like vibrato, for example. Thus 
mods are different from pure sample files such as WAV or AU, which contain no 
sequencing information, and MIDI files, which do not include any custom 
samples/instruments.” (Defacto2, 2001 [c]) 

Much of the software written to create *.MOD files was coded by enthusiasts and 
distributed as shareware. As such, it lacked any standardisation, and the MOD file 
came in many sub-formats, such as *.IT, *.MOD and *.S3M. 

This new *.MOD software sampling technology allowed improvements in sound 
quality coupled with relatively small file sizes. The file sizes were kept small 
because whole songs did not need to be stored as a continuous *.WAV file; repeating 

18 



 

sections (such as drum loops) could be simply stored within the *.MOD file as a 
single loop, and then “called” by the sequencing software to play when needed. 

These *.MOD files had numerous benefits over MIDI files. Any cheap D.A.C. 
enabled soundcard would suffice to play the files back, since the sound quality was 
almost entirely based on the software. This is unlike MIDI files where the quality is 
dependant upon the MIDI playback hardware. As such, a MIDI file will often sound 
quite different when moved from one computer to another, whereas a *.MOD file 
will always sound identical. 

Due to the nature of the *.MOD, whereby up to 16 audio samples had to be mixed 
down onto one or two 8-bit hardware output channels, there was always a loss of 
quality. Older *.MOD files are characteristic for their “grainy” timbre, caused by bit 
quantisation at this mixing stage. 

The *.S3M format, a development on from the *.MOD format, permitted the use of 
samples up to 44kHz, but due to hardware available at the time, the output was still 
restricted to 8 bits. 

Soon, a new piece of hardware, the Gravis Ultrasound, was developed which allowed 
up to 32 dedicated digital audio output channels. This neglected the need for lossy 
mixdown to one or two 8-bit audio channels and allowed the *.MOD format to play 
back at much higher quality. The Gravis Ultrasound was a very popular card among 
musicians for this reason. 

Writing music in tracker format is very difficult. Unlike modern day sequencers, 
which allow traditional musicians to compose music using scores, the tracker file 
was created using tables of numbers and often played using the QWERTY keyboard 
rather than a traditional piano keyboard. 

19 



 

 

 

A
o
l
t
i

6
1
c
b

A

S
b
t

Figure 6-5 Screenshot from
"FastTrackerII" 
n example of a popular tracker program, “FastTrackerII”, is shown here. The layout 
f this software is comparable to many other tracker programs. The digital audio is 
oaded from the hard disk into the storage area at the top right of the screen, and the 
able that dominates the lower half of the screen contains timing and pitch 
nformation for playing back the samples that have been loaded. 

.1.5.5 Digital Audio becomes 16 bit 
6-bit audio takes up more storage space as 8-bit audio. This can be shown by 
reating two one-second audio files, one at 16 bit and the other at 8 bit. By saving 
oth, the size can be easily compared using Microsoft’s Windows Explorer. 

Figure 6-6 Size comparison of two identical-length 8 and 16 bit audio files 

s seen here, the 16-bit audio file is twice the size of the 8-bit file. 

ince there is a x2 increase in size, computer storage needed to grow in capability 
efore 16 bit samples of any usable length could be stored. Fortunately, storage 
echnology improves very quickly: 

20 



 

 “The increase in data storage capacity of hard disk drives (HDDs) has increased at 
roughly the same rate as the speed of microprocessors, with a 60% compound annual 
growth rate.” (Gorham Consulting [j]) 

The SoundBlaster 16 
With this rapid increase in size, it was in 1992 that Creative saw a market for their 
SoundBlaster 16, a card with similar features to the original SoundBlaster but 
offering 16-bit audio and the updated OPL3 FM synthesiser. 

As users began to buy the newer SoundBlaster cards, software was written that took 
advantage of the 16-bit capabilities. 

Also, the tracker format was updated to make use of 16-bit audio files; these new 
tracker files had the extension *.XM.  

The *.XM format also offered other features such as volume / pitch envelopes and 
multi-sampled instruments. 

Multisampling 
In early tracker software, when a sample was loaded into memory, it could be played 
back at any pitch. This allowed musical sounds to be spread across the keyboard and 
played like a piano. However, the further away from the “root pitch” (the pitch where 
the sample was neither sped up nor slowed down) the less realistic the sound became. 
This is because by speeding up or slowing down musical samples, the apparent 
resonant frequencies of the instrument that is being copied become less realistic. As 
such, the higher the pitch of the sample, the smaller the instrument sounds, but the 
lower the pitch, the larger the instrument sounds.  

A second drawback of altering the pitch of a sample is that the original sample has its 
sample rate fixed when recorded. If, for example, a sample is recorded at 22kHz, 
then increasing its pitch will necessitate an increase in this sample rate. In order to 
play this re-pitched sample through 22kHz output hardware, it will have to be re-
sampled down to 22kHz again by interpolation. Linearly interpolating a sample’s 
value based on the two closest samples has the effect of introducing harmonic 
distortion. 

Multisampling allows several samples to be used to represent one instrument. One 
sample, for example, could be used to represent each octave of the instrument. This 
dramatically reduces the amount of pitch modification necessary, reducing harmonic 
distortion, and creating a more natural timbre. 

6.1.6 Wavetable Synthesis 
Wavetable synthesis is an extension of the multisampling techniques of the tracker. 

“In Wave Table synthesis a desired pitch is achieved by taking a pre-recorded sample 
of one pitch and playing back the recording faster or slower to match the desired 
pitch” (Net Express, 1996 [k]) 

Whereas with the tracker it was only possible to play samples as an instrument from 
within the tracker software, companies developed hardware that offered the same 
possibilities that could be used alongside any chosen sequencer software. 

21 



 

The Gravis Ultrasound (GF1) is one example of wave table synthesizer. It has RAM 
onto which instruments can be loaded and played back using MIDI messages. 

Creative also released a revision of their SoundBlaster16, the SoundBlaster16/ASP, 
that could accept a “Wave Blaster” daughter board. This daughter board was a 
separate piece of hardware that could be plugged into a slot on the 
SoundBlaster16/ASP, giving the added functionality of wavetable synthesis. The 
instruments where made of 16-bit recorded samples, and could be played back in 
stereo. Sound quality was restricted due to the onboard ROM that stored the samples. 
At only 1Mb in size, samples had to be kept very small. It was common for looping 
to be used in order to save storage space. Rather than storing complete instrument 
samples that often include sustained decays, only the attack (A, below) and first part 
of the instrument’s decay (B, below) were sampled. 

Figure 6-7, only parts A and B were kept from the original sample 

When the instrument was played back, the attack portion (A) was played once, and 
then the portion of the decay (B) was looped as an amplitude envelope faded it out. 
This gave a good approximation of the original sound, but also saved a great amount 
of storage space. 

22 



 

Figure 6-8 Part “B” was looped and faded, as shown here 

Creative’s SoundBlaster series of cards remained the standard for computer-based 
sound reproduction technology for many years after the introduction of the 
SoundBlaster16. Subsequent versions of the card differed very little in the core 
technology they offered. 

The SoundBlaster 32 was in most aspects identical to the SoundBlaster 16 except 
that it offered 32 wavetable voices, and the SoundBlaster 64 that followed offered 64 
simultaneous voices. One new capability that was introduced with later versions of 
the SoundBlaster 32 was the inclusion of up to 28Mb of RAM. Users could record 
their own samples to the hard disk using the card’s A.D.C., and upload them to this 
RAM to be played as multisampled instruments. 

Creative’s SoundBlaster 128 increased polyphony again to 128 instruments, and also 
came with an EMU8000 ASIC chip manufactured by the hardware sampling 
company E-mu.  

Where previously linear interpolation had been used to alter the pitch of samples, 
thus introducing harmonic distortion, this new chip allowed four data points (four 
individual samples in series) to be interpolated as a curve using polynomials. This 
greatly increases the accuracy of the re-pitched sound and reduces harmonic 
distortion. 32-bit mathematics is carried out inside the chip in order to derive the 
final interpolated sample. 

Multitasking and the audio software suite 
Microsoft’s Windows operating system had allowed “multitasking”, the ability to run 
more than one application and switch between applications, since the release of 
version 3.0. Due to the size of digital audio files and thus the hardware-intensive 
nature of audio software, it did not become practical to multitask audio applications 
until computers had increased dramatically in speed. In 1995, when Microsoft 
released Windows95, software developers began to take advantage of this 
multitasking capability to create audio applications that where designed to run side-
by-side as suites. 

23 



 

6.1.7 Mellosoftron and the Software Wavetable. 
The first digital audio oriented use of this multitasking technology was the software 
wavetable. This was emulation in software of the wavetable features offered by the 
soundcards of the early 1990s. Sound samples where stored on the hard disk, and 
loaded into the computer’s system RAM rather than dedicated soundcard’s RAM. 
From here, a software application could be used to re-pitch the samples and then 
communicate the sound using driver software to the D.A.C. of the soundcard for 
playback. 

One of the more popular software wavetable applications available was 
Mellosoftron, written by Polyhedric Software. 

This application could be multitasked alongside a MIDI sequencer application. The 
user would compose music on the sequencer to be played by the Mellosoftron, and at 
playback the use of MIDI driver software would send the MIDI instructions from the 
sequencer to the Mellosoftron.  

This technique of storing the sounds in system memory meant that the restrictions of 
sample length were loosened. Between 1995 and 1999, computers commonly carried 
from 4Mb up to 32Mb of system memory. This was a great improvement over the 
1Mb available on soundcards at that time. 

Drawbacks 
Of course, some of this memory was needed for system operations such as the O/S 
and applications. By claiming large portions of system memory for the storage of 
samples, it was not uncommon for the computer to run out of RAM and be forced to 
use virtual memory instead. This had the effect of slowing the computer down 
dramatically, and often caused timing problems and glitches in the audio playback. 

A second problem was that of CPU load. The relatively slow CPUs of that era (often 
between 66MHz and 160MHz) had difficulty completing all the tasks demanded of 
them at sufficient speed to facilitate smooth audio playback. Machines at the slower 
end of the scale would glitch during playback, and could often lock up completely 
when asked to run a sequencer, a software wavetable, and an O/S simultaneously. 

Direct Music 
Microsoft has included a software wavetable in their DirectX windows extensions 
since version 7.0. Termed “Direct Music”, it is an API that allows programs to play 
music using a generic MIDI sound-set that is identical on every DirectX enabled 
computer. This gives standardisation in timbre between computers. 

Since it inclines game developers towards once again generating music on the fly 
using MIDI rather than continuing to rely upon Redbook CD audio, it is going some 
way towards re-instating the dynamic music techniques popularised by the MOD 
format. 

“DirectMusic … offers consistent playback of sound sets using an open standard, 
Downloadable Sounds Level 1 (DLS1). On top of that, DirectMusic opens more than 
one door to achieving adaptive musical scores in games”. (Hays, T. 1998 [3]) 

24 



 

6.1.8 Virtual Synthesisers 

6.1.8.1 Offline Virtual Synthesis 
Where Mellosoftron had previously emulated a wavetable synthesiser, in 1994 
developers took this idea and began to emulate complete hardware synthesisers using 
the power of newer computer CPUs. 

Initially these programs ran offline, not in real-time. The user would be presented 
with an array of sliders on screen that altered variables in the software. These sliders 
were similar in function to those found on traditional analogue sequencers, 
controlling for example oscillator waveforms, filter cut-offs, oscillator pitches and 
envelope times. 

 Once the user was happy with the slider’s arrangement, the software would be 
instructed to generate a *.WAV file on the hard disk. This *.WAV file, usually 
containing a single musical note, could then be loaded from the hard disk onto any 
wavetable and used to create music. 

SimSynth 
Released in 1994, SimSynth 1.0 was the first generally released software synthesiser. 

Figure 6-9, Screenshot showing SimSynth’s controls 

Due to its offline nature, it was capable of outputting audio files at 44kHz and 16 
bits. The interface was divided up into 5 main sections, correlating with the 5 
elements to its synthesis model. 

25 



 

The oscillator section allowed the user to choose between a triangle, sawtooth, pulse 
or noise waveform. This source could then be sent to the filter. An envelope can 
control both the oscillator and the filter. Finally, a choice of 6 simple effects could be 
applied to the output before being generated on the hard disk. 

Drawbacks of the offline model 
SimSynth 1.0 offered a cheap way for musicians to synthesise their own sounds, 
where hardware to create equivalent sounds could cost up to 1000 pounds. 

However, much of the pleasure of analogue synthesis was lost with SimSynth, since 
without real-time control users where forced to silently adjust arbitrary knobs in the 
hope that they would produce a pleasing sound upon generation. This was in some 
ways a step back to the protracted methods of the first offline music software, 
“Music1”. 

6.1.8.2 Real-Time Virtual Synthesis 
 As CPUs increased in speed, computers became capable of generating audio “on the 
fly”. It was possible for software to generate and stream audio data directly to the 
soundcard with no need for temporary storage on the hard disk. This increase in 
speed revolutionised much of the computer-based audio signal processing technology 
available at the time. 

VAZ 
In 1996, Martin Fay released a program called “VAZ” (Vurtual Analogue 
Synthesiser) V1.0. 

26 



 
Figure 6-10 Screenshot showing VAZ's controls 

This piece of software was very similar in features to SimSynth, but ran in real time 
on computers with CPUs of 66MHz or faster. Running in real time allowed the user 
to adjust parameters of the sound while listening to the results, a breakthrough for the 
IBM compatible platform of similar significance to the real-time capabilities of 
Music11 in 1973. 

6.1.9  Host – Based systems 
Currently, general-purpose home computers are powerful enough to cope with a 
many aspects of musical synthesis and audio processing. The majority of both IBM 
compatible computers built today have high quality audio output capability pre-
installed as standard, in the form of PCI soundcards, or sound cards pre-built onto the 
system’s motherboard. 

The software available for these machines has continued to be improved. The new 
standard for home-computer music technology is the “Host-based System”. 

Software synthesisers such as VAZ were standalone applications that had to be 
executed alongside sequencer software. This carried the processing overhead of 
maintaining two complete applications in memory at one time, with no sharing of 
resources. The breakthrough in computer-based audio software that is the host-based 
system allows these types of software to run from within sequencer applications. 

This system is utilised by installing one of many “hosts” available on the market 
today. These hosts are similar in design to the midi and audio sequencers that have 
been available since the early 1990s but carry new capabilities that allow the end 
user to install 3rd party “plugins” in order to augment the capabilities of the host. 

A plugin is a piece of software that is opened from within the host and shares some 
of the host’s resources. This reduces memory and CPU overheads and allows for 
more complex audio software to be run than in previous multi-tasked arrangements. 

27 



 

Many of the plugins available model traditional analogue effects units such as EQs 
and vocoders, where others use DSP to create newer digital effects such as pitch 
shifting. 

Plugin technology is now adopting many of the ideas discussed throughout this 
report and making them it’s own. Current versions of software wavetables such as 
Mellosoftron are now run from within VST hosts. 

Software synthesisers, too, have been adopted by the host-based system. Native 
Instruments have released FM7, a plugin version of the Yamaha DX-7 FM 
synthesiser, which shares it’s sound generator with Yamaha OPL chips discussed 
earlier in this report.  

As can be seen, many of the plugins available for the VST system offer simulation of 
traditional hardware methods by the use of software emulation, coupling the abilities 
offered by the original systems with the convenience of integration with sequencer 
packages and without the need for new hardware. 

The applications that will now be created for Chapter 2 will demonstrate many of the 
benefits of core advances discussed in this chapter. 

28 



 

7 Chapter 2 - Use the Steinberg SDK to create an advanced ring 

modulating plugin for use in host-based systems 

In this chapter the development cycle of an advanced ring modulating plugin for the 
VST host system is described. This development cycle is divided up into 4 sub-
stages, with each stage building upon the ideas presented in the last. 

The sub-stages are as follows: 

1- A Plugin that has no effect 

2- A Sawtooth ring modulator 

3- A Sine-Wave Ring Modulator 

4- A Sine-Wave Ring Modulator with additional LFO control 

Although Steinberg’s SDK takes control of much of the interaction between the 
plugin and the host, all algorithms presented in this section are completely original 
works designed specifically for this project report. 

SDK availability 
Steinberg, a software company based in Germany, are the manufacturers of Cubase 
VST - one of the foremost host-based sequencers available. Since their software sales 
benefit from the availability of plugins, they encourage 3rd parties to develop them. 
In order for all plugins to work correctly with Steinberg’s host, an SDK is available 
that gives instructions on where to begin and how to maintain compatibility.  

This SDK should be acquired as a first step towards creating a new plugin. At time of 
writing, the latest version (2.0) of the SDK is available at http://www.steinberg.net/. 

Plugin Foundations 

7.1.1 Creating a *.dll 
A VST plugin is a standalone *.dll file which is placed in a directory to which the 
VST host is directed. It was found that details of how this works vary from host to 
host, so for details of this it is best to check the host’s manual. 

The fastest way to begin creating new plugins is to open the default workspace 
provided by the SDK, “vst2examples.dsw”. For the purposes of this report example 
plugins were taken as starting points in order to achieve the correct infrastructure. 
The provided algorithms and GUI control settings where deleted and new controls 
added as needed.  

The plugin is written using the C++ computer language. A good understanding of 
C++, object oriented programming, and DSP techniques was found to be 
indispensable since these skills are all needed to conceive and implement new plugin 
ideas.  

29 

http://www.steinberg.net/


 

7.1.2 Inheriting Elements of the SDK 
The SDK comes with many *.h, *.hpp, and *.cpp files already placed in the default 
workspace. Of all these files, it is only one *.cpp file that will be focused upon. 
Steinberg demand that the other included files are inherited not edited. 

“Never edit any of these files. Never ever. The host application relies on them being 
used as they are provided.” (Steinberg, 2001 [9]) 

7.1.3 GUI 
Although a custom GUI can be created for 3rd party plugins, in the absence of such a 
GUI, the host will automatically generate a default visualisation for the controls. For 
the purposes of this project, the default host GUI was used since the focus of the 
project is on the audio signal processing rather than graphical design. A second 
benefit of accepting the default GUI is that the plugin will remain platform 
independent. 

“(The SDK) allows practically any user interface to be defined. A negative aspect is 
that then you can quickly land up in platform specifics when dealing with the nuts 
and bolts of the interface issues.” (Steinberg, 2001. [9]) 

The technique of visualisation varies from host to host. For example Steinberg’s 
Cubase VST represents user variables as horizontal sliders, Sonic Syndicate’s Orion 
Pro represents them as knobs, and Steinberg’s WaveLab represents them by 
simulating a rack-mounted device. Below are screenshots of the completed advanced 
ring modulator plugin as seen in these three different hosts: 
Figure 7-1 Sonic Syndicate’s
Orion default plugin GUI 
I 

 

Figure 7-2 Steinberg’s WaveLab default GU
30 



 

Figure 7-3 Steinberg's Cubase default GUI 

 

7.2 Development of proposed applications 

7.2.1 Create a plugin that has no effect. 
It is unwise to begin implementing complicated algorithms from the offset. For this 
project it was found that to get to grips with the SDK it was better to start with 
something very simple and ensure that it was understood completely. From this 
foundation, more complicated effects can then be created. 

The most basic plugin is a plugin that does nothing, i.e. has no effect upon the 
inputted sound. 

This example of a plugin with no effect will help to describe some of the functions 
involved. An understanding of these will be needed when creating more complicated 
applications such as those found later in the report. 

7.2.1.1 The process() and processReplacing() functions 
The host application that plays back audio files is often modelled upon the classic 
hardware mixer interface design. The audio is streamed from the hard disk through a 
virtual mixer channel, and that channel includes associated “send” and “insert” 
settings in similar vein to hardware mixers. It is at these two points that plugin 
effects can be added. The “send” effect allows a proportion of the inputted sound to 
be conveyed to the plugin while the unaffected audio continues to flow straight to the 
master output. This allows the amount of effect used (i.e. the wet/dry mix) to be 
controlled by the “send” control. 

In contrast, the “insert” effect sends the entire audio signal through the plugin, 
removing any control of wet/dry balance. 

This is explained diagrammatically overleaf: 

31 



 

Figure 7-4 Simplified model of a virtual mixing desk signal path 

Master Output 

Effect (a) 

Fader 

EQ 

Effect Insert (b) 

Effect Send control 

Audio Data (from hard disk) 

“Virtual” mixing desk 

 

The choice of “send” or “insert” operation within the plugin code is accomplished 
using the process() and processReplacing() functions held in the audioeffect and 
audioeffectx header files. These functions act as intermediaries between the plugin 
and the host, and actually represent the “send” and “insert” effect-types respectively. 

For this first example, the following code was constructed. The plugin is designed to 
take audio from the input and convey it directly to the output. As such, it operates as 
an insert effect, and should be placed within the processReplacing() function. 

 (The *.cpp file in which this function is placed is somewhat lengthy, so has been 
included in the appendix for reference.) 

7

Figure 7-5 processReplacing source code for a plugin with no effect 

T

void AGain::processReplacing(float **inputs, float
**outputs, long 
 sampleFrames) 
 { 
     float *in1  =  inputs[0]; 
     float *in2  =  inputs[1]; 
     float *out1 = outputs[0]; 
     float *out2 = outputs[1]; 
        while(--sampleFrames >= 0) 
            { 
              (*out1++) = (*in1++) ; 
              (*out2++) = (*in2++) ; 
            } 
   } 
.2.1.2 Discussion of processReplacing() Source code for a plugin 
with no effect 

he elements of this function are as follows: 

32 



 

When the function is begun, it is fed **inputs and **outputs, which direct it to the 
input buffer and the output buffer. SampleFrames denotes the size of the buffer. 

The input and output values are then made equal to variables in1 and in2 (being the 
left and right channels of the input) and out1 and out2, (left and right channels of the 
output) 

The while loop that follows decrements sampleFrames until it is zero, each time 
copying a value from the input to the output, and moving both input and output along 
one sample (by using the increment function “++”) 

Once sampleFrames = 0, the buffer has been completed, and the function finishes. 
This entire process is then repeated with a new buffer-load of audio. 

This basic operation is not discussed in the SDK documentation and it was necessary 
to study C++ reference books in order to gain understanding of the pointers, arrays 
and buffers involved. 

7.2.2 Audio representation within the SDK 
Since this detail is not well documented in the Steinberg SDK, the following 
experiment was devised and carried out to discover that plugins represent audio as 
values between  +/-1. 

Firstly, a plugin that outputs a constant +1 to one stereo channel, and –1 to the other, 
was created. The code written to achieve this is shown overleaf. 

33 



 

 

Figure 7-6 Algorithm code used to test audio representation 

 

 

C
p

void AGain::processReplacing(float **inputs, float **outputs, long 
 sampleFrames) 
 { 
     float *in1  =  inputs[0]; 
     float *in2  =  inputs[1]; 
     float *out1 = outputs[0]; 
     float *out2 = outputs[1]; 
        while(--sampleFrames >= 0) 
            { 
              (*out1++) = (1) ; 
              (*out2++) = (-1) ; 
            } 
   } 
34 

ompiling this code and recording the audio that is outputted by the host when the 
lugin is in operation creates the following results: 

Figure 7-7 Audio output from previous figure as displayed in a wave editor 



 

 

This demonstrates that audio is represented between +/-1. This information will be 
invaluable when deriving algorithms later. 

7.2.3 Create a sawtooth ring modulator 
As the next step on from the “blank” plugin, detailed earlier, a sawtooth ring 
modulator will now be constructed. 

This example will give a foundation understanding of a plugin that can be augmented 
with new features as desired. 

Software planning – Operation flow charts of the sawtooth ring modulator 
When actually creating the DSP algorithm in code, it is very important to follow 
strict software engineering techniques in order to remain in full understanding of the 
code that has been written. 

Before typing a single line of code, a system design must be built. “The aim of 
system design is to develop a gross architecture of a system” (Ince, 1994 [2]) 

The design that was conceived for this first algorithm is shown here. 

tremolo = 0

Is tremolo
<0.1?

tremolo=(tremolo
+fGain)

Output = input* tremolo *10

A

 

N 

It was decided that the best way to
resets upon reaching a defined valu

Firstly, a variable “tremolo” is dec
is greater than 0.1. Zero isn’t, so
variable that is adjusted by the use

fGain can be linked to a slider or k

The inputted audio sample is multi
Y

Figure 7-8 A flowchart describing a sawtooth ring modulator 
algorithm 
Tremolo=0

Output = 0

 create a sawtooth wave was to use a counter that 
e. 

lared and set to zero. It is then checked to see if it 
 “tremolo” is incremented by amount: “fGain”, a 
r. 

nob on the GUI. 

plied by tremolo. 

35 



 

This stage causes a loss of gain by a factor of 10, so it was decided to make this gain 
up by multiplying the result by 10. This final result is then sent to the output. 

The program returns back to “A”, and continues as described above until tremolo 
becomes >=0.1. At this time, tremolo is re-set to zero, and the plugin outputs a 
sample of zero magnitude. From here, the program once again returns to point “A” 
and the entire process repeats.  

36 



 

The predicted output of this plugin is shown here modelled in Microsoft Excel. 

Figure 7-9 Sine wave input to the plugin 

Figure 7-10 Sawtooth modulation signal 

 

 

 

Figure 7-11 Anticipated output of plugin 

37 



 

The realisation of this software design was created in code as follows: (only the 
algorithm is shown here, the full source is available in the appendix) 

 

 

T
s
f
o
f

T
f
a
l

T
i

double tremolo=0; 
void AGain::processReplacing(float **inputs, float **outputs, long
 sampleFrames) 
 { 
     float *in1  =  inputs[0]; 
     float *in2  =  inputs[1]; 
     float *out1 = outputs[0]; 
     float *out2 = outputs[1]; 
  if ( tremolo < 0.1 ) 
       { 
        tremolo=(tremolo+fGain); 
        while(--sampleFrames >= 0) 
            { 
              (*out1++) = (*in1++) * tremolo *10; 
              (*out2++) = (*in2++) * tremolo *10; 
            } 
       } 
  if ( tremolo >= 0.1 ) 
   { 
     tremolo=0; 
        while(--sampleFrames >= 0) 
        { 
              (*out1++) = (*in1++) * tremolo; 
              (*out2++) = (*in2++) * tremolo; 
        } 
   } 
} 
Figure 7-12 processReplacing source code for a sawtooth ring modulator plugin 
operating at arbitrary frequencies 
his code will modulate the input using a sawtooth wave at an arbitrary frequency 
et by the user. The variable “tremolo” is declared outside of the processReplacing() 
unction to avoid being re-initialised each time a buffer of audio is completed. The 
ther elements of the code are as per the software design flowchart Figure 7.8: “A 
lowchart describing a sawtooth ring modulator algorithm”. 

o allow the user to modulate at a specific chosen frequency rather than an arbitrary 
requency, some additions must be made to the code. Since the host software works 
t 44100Hz, (i.e. 44100 samples per second) this value can be used to derive the 
ength of one Hz in C++ code. 

he sketch below was created to show one period of a sine wave, at 1Hz, divided up 
nto 44100 samples: 

38 



 
Figure 7-13 Sketch to illustrate the division of a 1Hz wave period into individual samples 

 

Deriving the above values indicated how many digital samples are processed each ½, 
¼, ¾, and full second. This supplies the relevant information on how to derive 
specific frequencies in C++. If the tremolo variable used in the sawtooth code (re-
named to “counter” herein for clarification) is adjusted such that it is increased by a 
11020th of 1, for each sample that is processed, it will reach a fixed proportion of 1 
every 8th of a second. (“Counter” grows twice as quickly when processing stereo 
wave files due to an increase of “counter” once per sample for each channel.) 

1/11020 = 0.000090744 

If this value (11020th of 1) is then divided by 8, “counter” will increase and reset at 
the correct speed to generate a 1Hz sawtooth wave. 

0.000090744 / 8 = 0.000011343 increase needed per sample at “counter” 

This value can then used to give the user control over the modulation frequency. A 
new variable “topFreq” is introduced that denotes the maximum frequency of the 
modulator. (It is set at 1kHz since with experimentation it was found that this offers 
the most creatively useful range of modulation.) The user variable “fGain” that 
creates values between 0 and 1 can be multiplied by the topFreq variable to generate 
proportions of 1kHz on the fly. 

39 



 

The algorithm code that contains these modifications is shown below: 

(The complete *.cpp file can be found in appendix) 

Figure 7-14 Algorithm code allowing user to select specific modulation frequencies. 
float counter = 0; 
double quarterSec = 0.000011343; 
double topFreq = 1000; 
void AGain::processReplacing(float **inputs, float **outputs, long 
 sampleFrames) 
{  
    float *in1  =  inputs[0]; 
    float *in2  =  inputs[1]; 
    float *out1 = outputs[0]; 
    float *out2 = outputs[1]; 
        while(--sampleFrames >= 0) 
            { 
   counter = (counter + (quarterSec*(topFreq*fGain))); 
   if (counter > 0.5) 
    { 
    counter = 0; 
    } 
              (*out1++) = (*in1++ * counter); 
              (*out2++) = (*in2++ * counter); 
 
 
            } 
} 
 

 

7.2.4 Replacement of the sawtooth modulator with a sine wave 
A sawtooth modulator is not ideal due to the rich harmonic content caused by steep 
transients in sawtooth waves. These harmonics, when ring-modulated with a second 
signal, produce double the number of harmonics again due to the “sum and 
difference” nature of ring modulation. The abundance of new harmonics can 
overpower any pitch information in the source signal. 

The use of a sine wave as a modulator will produce fewer harmonics and a more 
musical sound. 

A sine wave can be generated in our algorithm by utilising the “counter” variable. By 
adjusting the code used previously such that “counter” counts from 0 to 2pi, a sine 
wave can be generated from the resultant series of numbers. 

It was found that “counter” must count precisely from 0 to 2pi in order to create a 
perfect single period of sine before it is reset. If “counter” over-counts by the 
slightest amount, distortion of the modulation signal will occur. 

The following diagrams show the adverse effects that occurred as a result of over-
counting. The first diagram shows a portion of the sine wave with the extra sample 

40 



 

identified. The second diagram shows an FFT of a pure sine wave followed by the 
distorted sine wave.  

Figure 7-16 Detail of a 1/2 period sine wave showing 1 errant sample 

 

Figure 7-15 FFT comparing a pure sine tone with the wave displayed above 

 

By conducting this experiment it is shown that by just adding a single errant sample 
to the sine signal, the FFT contains many new harmonics where there should be only 
one fundamental frequency present. 

41 



 

With these points in mind the following flowchart for the sine wave ring modulator 
algorithm was designed. 

declare "counter" variable
and make it = 0

declare quarterSec variable to allow
accurate frequency selection

quartersec = (0.000570162/4)

Declare variable to set maximum
selectable modulation frequency

topFreq = 10000

Is sampleFrames
>= 0?

Increase size of counter:
counter = (counter +

(quarterSec*(topFreq*fGain)))

Is counter >2pi?

Take 2pi from counter Declare "sinMod" and make
it equal to sin(counter)

Output = Input x sin(counter)

Y

Y

N

N

Buffer is complete,
request new buffer

from host

Figure 7-17 Flowchart detailing operation of a sine wave ring modulator algorithm 

 

This flow chart is more complex than previous examples. It shows the operation of 
the sampleFrames “while loop”, a loop that controls the use of audio buffers from the 
host. The variable sampleFrames holds the number of samples in each buffer-load of 
audio. For each sample that is processed, sampleFrames is decremented and checked 
to see if it has reached zero. Upon reaching zero, the buffer is empty and a new full 
buffer is requested from the host. 

42 



 

The predicted output of this sine ring modulator plugin is shown here as modelled in 
Microsoft Excel. 

 

Figure 7-18 A sine wave input to the plugin 

 

 

Figure 7-19 A high frequency sine wave used to modulate
the input wave 
Figure 7-20 The resultant output of the plugin 

43 



 

The realisation of this software plan is shown in the segment of code below. (The 
complete sine wave ring modulator code can be found in the appendix) 

 

Figure 7-21 Algorithm code for a sine wave ring modulator 

float counter = 0; 
double quarterSec = (0.000570162/4); 
double topFreq = 10000; 
void AGain::processReplacing(float **inputs, float
**outputs, long 
 sampleFrames) 
{  
   float *in1  =  inputs[0]; 
   float *in2  =  inputs[1]; 
   float *out1 = outputs[0]; 
   float *out2 = outputs[1]; 
     while(--sampleFrames >= 0) 
     { 
     counter = (counter+(quarterSec*(topFreq*fGain))); 
 if (counter > (2*3.14159)) 
  { 
  counter -= (2*3.14159); 
  } 
 double sinMod = sin(counter); 
 (*out1++) = ((*in1++)*(sinMod/2)); 
 (*out2++) = ((*in2++)*(sinMod/2)); 
     } 
} 

 

7.2.5 Add further control for the user 
As a final addition to the plugin, an LFO will be introduced to control the ring 
modulation frequency. Two dials will be added to the GUI to control LFO frequency 
and LFO depth. 

This control will improve the plugin’s repertoire of sounds and as such it’s creative 
applications. 

The software flowchart plan designed to implement this improvement is shown 
overleaf: 

44 



 

Declare the following variables:
counter = 0 to create ring modulation tone

countertoo = 0 to create LFO signal
quarterSec = (0.000570162/4) to allow precise frequency selection

topFreq = 1000 to set upper limit of mod frequency
LFOFreq = 10 to set upper limit of LFO frequency

Is sampleFrames
>=0?

Increase "countertoo" by
(quarterSec x the

proportion of "LFOFreq"
selected by the GUI)

Is countertoo
>2pi?

Take 2pi from
countertoo

Buffer is complete,
request new buffer

from host

Take sine of countertoo,
this is the LFO signal

Derive the proportion of topFreq set
by the GUI.

Derive the proportion of the LFO
amplitude set by the GUI.

Add the product of these two results,
and "quarterSec", to "counter".

Is counter >2pi?

Take 2pi from
counter

Derive sine of "counter"
This gives the resultant
modulation frequency

Output the product of the input
and the modulation frequency

Y

N

Y

N

N

Y

Figure 7-22 Software Design for an LFO controlled Ring Modulator 

 

 

The diagram shows the generation of two separate sine signals. One is the 
modulation frequency and is created in a similar way to earlier examples. 

The second is the LFO generator. The user will have control over the amplitude and 
the frequency of this signal, by linking the two new user-controlled variables to the 
increase-rate of “countertoo”.  

From this software plan the following code was written. Only the algorithm is shown 
here, the complete source is found in the appendix. 

45 



 

 

Figure 7-23 Algorithm Source code written to implement an LFO controlled Ring Modulator 

7
T
n
i
h
b

7
S
v
p
b
d

 

 

float counter = 0; 
float countertoo = 0; 
double quarterSec = (0.000570162/4); 
double topFreq = 10000; 
double LFOFreq = 10; 
void ADelay::processReplacing(float **inputs, float **outputs, long 
 sampleFrames) 
{  
    float *in1  =  inputs[0]; 
    float *in2  =  inputs[1]; 
    float *out1 = outputs[0]; 
    float *out2 = outputs[1]; 
        while(--sampleFrames >= 0) 
        { 
 countertoo = (countertoo + (quarterSec*(LFOFreq*fFeedBack))); 
 if (countertoo > (2*3.14159)) 
  { 
  countertoo -= (2*3.14159); 
  } 
 double nuMod = sin(countertoo); 
 counter = (counter + (quarterSec*(topFreq*fDelay)+(nuMod*(fOut/8)))); 
 if (counter > (2*3.14159)) 
  { 
  counter -= (2*3.14159); 
  } 
 double sinMod = sin(counter); 
 (*out1++) = ((*in1++)*(sinMod/2)); 
 (*out2++) = ((*in2++)*(sinMod/2)); 
 } 
} 
.2.6 Details of miscellaneous techniques and additions to code 
he focus of this chapter is on the planning and development of new algorithms. It is 
ot intended to comprehensively cover every line of code, modification, or step 
nvolved in implementing chosen algorithm due to space constrictions. There are, 
owever, some more important core changes that must be made to the SDK that will 
e mentioned in this section: 

.2.6.1 Enumerating new GUI controls 
tudy of C++ enumeration techniques was carried out in order to introduce extra 
ariables to the GUI. It was understood that the enumerated type allows a set of 
ossible values to each be given a descriptive name allowing the clear differentiation 
etween them. Enumeration is ideal for declaration of new GUI variables, and is 
one by using the phrase: 

46 



 

 

 

 

Figure 7-24 Enumeration Technique 
 

enum 
{ 
 variable1; 

variable2; 
variable3; 
kNumParams 

}; 
This technique allows the host to have clear identification of the dials and sliders it 
needs to generate at runtime, and also makes source code more manageable due to 
the identification of confusing numeric variables with “friendly” variable names. 

7.2.6.2 Labelling variables in the GUI 
Many of the more important miscellaneous lines of code needed to create new 
plugins rely upon calling functions from the SDK. For example, in order to mark the 
GUI representation of user-alterable variable controls with meaningful labels, a 
function “getParameterName” is called from audioEffect.CPP 

This function is sent two values; an index denoting which variable is to be labelled as 
per the enumeration index, and a pointer to a char data location in which the 
parameter name is to be stored. 

 

Figure 7-25 Usage of the "getParameterName" function 

 

A
w

void ADelay::getParameterName (long index, char *label) 
{ 
 switch (index) 
 { 
  case kDelay :    strcpy (label, " Root-Pitch  "); break;
  case kFeedBack : strcpy (label, "Speed"); break; 
  case kOut :      strcpy (label, " Amount "); break; 
 } 
} 
bove, three dials enumerated as “kDelay”, “kFeedBack” and “kOut” are labelled 
ith the strings “Root-Pitch”, “Speed” and “Amount” respectively. 

47 



 

The labels that result from this code can be seen in Fig. 7.1 “Sonic Syndicates’s 
Orion default plugin GUI” earlier in this chapter. 

7.2.6.3 Unique names 
Plugins must have unique names in order to allow the host to differentiate between 
them. A function called setUniqueID() is used to give the plugin it’s unique name, 
and upon choosing a name for a plugin it is possible to contact Steinberg and check 
that the name has not been used before. The name chosen for this project was “Kllr”, 
which is set by adding the following line at plugin initialisation: 

setUniqueID ('Kllr');   

48 



 

8 Analysis and Discussion 

8.1 Spectrograph Testing 
The main aim of this project is to create an advanced ring modulation plugin for the 
VST system. Tests will now be carried out in order to verify that the code completed 
in the previous section is operating correctly as such. 

The nature of a ring modulator is that if it is fed with one input frequency, it will 
output two frequencies. One will be the sum of the input frequency and the 
modulation frequency, and the other will be the difference between the input 
frequency and the modulation frequency. 

I.e. if it is fed with a 5kHz test tone and the modulation frequency is set to 2.5kHz, 
then the following two signals will be outputted: 

5kHz + 2.5kHz = 7.5kHz 

5kHz – 2.5kHz = 2.5kHz 

By the same methods it is derived that if the input is fed with a 5kHz test tone and 
the modulation frequency is set to 5kHz, then the output will consist of a 10kHz tone 
plus a 0Hz DC offset. 

In order to test the plugin, a signal generator was used to create a 5kHz test tone. The 
plugin was compiled and loaded into Steinberg’s WaveLab as its host. 

By playing the generated 5kHz tone through the ring modulating plugin, it was 
possible to analyse the output of the plugin using a spectrograph. 

Firstly a spectrograph was taken of the input signal, to ensure that it was 5kHz. This 
is shown below. 

Figure 8-1 Spectrograph of the 5kHz test tone 

49 



 

 

Then, the plugin was set to modulate at 2.5kHz and the output was analysed: 
Figure 8-2 Spectrograph of a 5kHz tone ring modulated by a 2.5kHz
tone 
From this spectrograph it can be seen that the output consists of a 7.5kHz and a 
2.5kHz tone. 

To verify these results, a second test was carried out with a 5kHz test tone and an 
identical 5kHz modulation frequency. A spectrograph of the output is shown here: 
Figure 8-3 Spectrograph of a 5kHz tone ring modulated by a 5kHz
tone 
50 



 

As expected, the output consists of a 10kHz tone and a 0Hz DC offset. These results 
conclusively show that the ring modulation algorithm created for this report works 
correctly. 

To verify that the LFO code that controls the modulation frequency is correct, the 
same 5kHz tone was fed through the ring modulator with a 2.5kHz modulation 
frequency. While the tone played, the LFO depth control was increased from zero to 
maximum and then returned to zero. This spectrogram shows the results: 

Figure 8-4 Spectrograph showing adjustment of the LFO depth 

As anticipated, the output frequencies start identically to those in Figure 8.2 
“Spectrograph of a 5kHz tone ring modulated by a 2.5kHz tone”, but begin to 
oscillate as the LFO depth control is increased. As the LFO depth decreases, the 
oscillations reduce and the output becomes once again constant. 

The final test was concerning the LFO frequency control. The same 5kHz tone was 
fed through the ring modulator with a 2.5kHz modulation frequency and LFO depth 
set to maximum. While the tone played, the LFO frequency control was increased 
from zero to maximum. The spectrogram overleaf shows the results: 

51 



 
Figure 8-5 Spectrograph showing changes in LFO frequency 

Once again as anticipated, the output frequency oscillation begins as a constant, but 
as time goes on it oscillates faster and faster, with no change in root modulation 
frequency or LFO depth. 

Of particular interest is the purity of the tones generated from the ring modulator. 
There are no erroneous aliases and there is no noise visible on the spectrograph. This 
shows that the mathematics used in the C++ design of this application were accurate 
down to sample level. 

8.2 Efficiency of code 
The efficiency of the code is very important due to the system intensive nature of real 
time audio playback. A plugin that takes up too many system resources can deny 
other parts of the system the CPU cycles they need to produce smooth glitch-free 
sound. Plugins available at time of writing often use between 1% and 15% of the 
available CPU cycles to carry out their effects when used on a 550MHz Pentium III. 
The ring modulator designed for this project was tested for its efficiency by running 
it from Steinberg’s WaveLab and monitoring the CPU usage as the plugin was 
enabled and disabled. The following data was recorded: 

52 



 
Figure 8-6 Graph showing CPU usage against time 

 

This graph shows CPU usage while the plugin is disabled (section A) and enabled 
(section B). When disabled, CPU usage is approximately 0.5%, and when enabled it 
is approximately 3.7%. Therefore the ring modulator plugin uses approximately 
3.2% of the CPU cycles on a 550MHz Pentium III system. This is in no way too 
inefficient. However, if it had been necessary to improve efficiency, this could have 
been done by the use of sine wave look-up tables. These store the sampled values of 
a sine wave and negate the need to perform sine calculations on the fly, thus reducing 
processing time of each sample. 

8.3 Usability Research – Comments 
Correctly functioning code and good efficiency mean nothing if the plugin creates an 
unusable non-musical sound. In order to get a measure of the plugins usability, a 
website where the plugin could be downloaded was created for the purposes of this 
project, alongside a request for feedback. The website content is included in the 
appendix. 

At time of writing, the plugin created for this project has been downloaded 139 times 
(Beseen Hit counter statistics, 2002 [l]). All feedback received thus far is positive, 
and has been included in the appendix. Highlights are shown here: 

53 



 

“It's neatly done, all the parameters have nice control feel with no crackling or stuff.” 
(Vesa Norila) 

“very artistic sound :o)” 
(Igor Yael) 
 
“i have loaded it up in orion, ooh it sounds all wibbly and metallic – wibblytastic!” 
(Paul Stimpson) 
 
 “yup, d/l'd your plug-in and it works well in audiomulch (a nice effect- given the 
title i was half expecting a run of the mill ring modulator ;-)” 
(Paul Random99) 

This feedback indicates that the plugin design has been very successful. 

54 



 

9 Implications of Change 

Backward compatibility 
When the VST 1.0 system was upgraded to VST2.0, the original files were expanded 
upon rather than replaced. As the VST system improves over time, Steinberg state in 
their SDK documentation that will try to maintain this backward compatibility. 

Software synthesis begins to replace it’s hardware counterpart 
Since so much of computer based audio processing is currently achieved by use of 
software instead of hardware, the hardware synthesis features of soundcards are 
becoming less important. The focus of soundcards seems now to be more on the 
quality of reproduction. Recently released soundcards such as the MidiMan 
AudioPhile 24/96, that uses a 24-bit 96 kHz DAC, focus on greater bit depth, higher 
sample frequency support, and digital I/O, rather than the new synthesis options that 
were the focus of earlier soundcards such as the Yamaha Adlib. 

55 



 

10 Conclusions  

How does the practical element in Chapter 2 successfully 
demonstrate the core benefits of many of the new technologies 
discussed in the Chapter 1? 
The analysis and discussion section of this report demonstrates that the first aim, to 
develop a new advanced ring modulation plugin that offers LFO control over 
modulation frequency and depth, has been successfully completed. This application 
is available for free download at http://www.aquaplancton.com/toby/index.html 

In fulfilling the second aim of the project, “to document core developments in 
computer based music-oriented audio signal processing” and demonstrate how they 
have affected current methods, the developed plugin demonstrates the following: 

Real time control over sound input, using techniques developed on from Music11 in 
1973 and VAZ in 1996.  

The application is not platform specific and requires no dedicated hardware. It will 
operate with any DAC enabled soundcard. This capability was introduced with the 
*.MOD format. A benefit of this attribute is that the software is free to distribute and 
use, again like many of the *.MOD trackers programs.  

The sound generated by the plugin will be identical from computer to computer, 
improving upon the hardware-specific MIDI format. 

The plugin works from within host based sequencers more effectively than 
multitasked programs like Mellosoftron 1.0. Throughout testing it has never causes a 
crash or audio glitch. 

56 



 

11 Recommendations 

In investigating the Steinberg VST SDK, it has been concluded that although 
challenging, the task of creating one’s own plugins is not insurmountable. 

The task comes highly recommended as a project. Although a great amount of 
groundwork is necessary to complete this type of project, the results are very 
rewarding. An understanding of C++ is essential. 

57 



 

12 References 

Literature references are listed by number e.g. [5] 

Internet references are listed by letter e.g. [f] 

12.1.1 Literature References 
1. Parsons, D. “Object Oriented Programming with C++” 2nd Edition, 2000 pp.13 – 
15. 

2. Ince, D.C. “Software Engineering” 1994 pp 7. 

3. Boulanger, R. “The CSound Book, perspectives in software synthesis, sound 
design, signal processing and programming”, 2000, Introduction. 

4. Varga, A. disC=overy – The Journal of the Commodore Enthusiast. Issue 2: 
October 1, 1996, Chapter /S07 - "Progenitor of the SID: An interview with Bob 
Yannes"  

5. Howe, H.S. Junior, “Electronic Music Synthesis: Concepts, Facilities, 
Techniques”, 1975, pp. 250 – 253. 

6. Rasmussen, E. A. “Playing sound on a PC”, “The CWI Audio File Formats 
Guide”, Version 2.10, 2002, appendix. 

7. Terratec Electronic GmbH, “AudioSystem EWS64L/XL Hardware Manual” 
Version 1.2, 1998, pp 13. 

8. Hays, T. “DirectMusic for the Masses”, Game Developer Magazine, September, 
1998, pp. 23-26. 

9. Steinberg. “Virtual Studio Technology Plug-In Specification Software 
Development Kit”, Version 2.0, 2001, pp. 5 

12.1.2 Internet References 
a. Paradiso, J.A. “American Innovations in Electronic Musical Instruments” 1999, 

http://www.newmusicbox.org/third-person/index_oct99.html 

b. Alstrup, A. “Commodore 64 Programmer's Reference Guide” 1987, 

http://stud1.tuwien.ac.at/~e9426444/sidtech.html 

c. Defacto2, “History of the Module”, 2001, 

http://www.defacto2.net/portal-music.html 

d. Rindeblad, C. “The creation of the SID chip” (1998) 

http://stud1.tuwien.ac.at/~e9426444/sidcreate.html 

58 

http://www.newmusicbox.org/third-person/index_oct99.html
http://stud1.tuwien.ac.at/~e9426444/sidtech.html
http://www.defacto2.net/portal-music.html
http://stud1.tuwien.ac.at/~e9426444/sidcreate.html


 

e. Digital Oracle, “Glossary” 

http://www.maxreboot.com/do/Glossary/I/IBM.html 

f. Hilderink, G.H. “Plug-and-Play devices in Java” (1998) 

http://www.rt.el.utwente.nl/javapp/Plug-and-play/TestBeeper/ 

g. Boone, K. “Kevin’s computing glossary index” (2000) 

http://www.kevinboone.com/compdict/frequency_modulation.html 

h. “MIDI and Digital Audio Terms”, (2001) 

http://www.cakewalk.com 

i. “IAEKM” (International Association for Electronic Keyboard Manufacturers) 
(1997) 

www.iaekm.org/p25.html 

j. Gorham Consulting, “Thin Films Lead Storage Revolution”  

http://www.goradv.com/Consulting/ConsultWhiteBriefsDS.htm 

k. Net Express “Synthesizers and Wave Tables (FM, OPL2/3)” (1996) 

http://www.tdl.com/~netex/sound/sound.html 

l: Beseen “Hit-counter Statistics” (2002) 

http://beseen5.looksmart.com/hitcounter_stats?account=1281002&counter=864572 

59 

http://www.maxreboot.com/do/Glossary/I/IBM.html
http://www.rt.el.utwente.nl/javapp/Plug-and-play/TestBeeper/
http://www.kevinboone.com/compdict/frequency_modulation.html
http://www.cakewalk.com/
http://www.iaekm.org/p25.html
http://www.goradv.com/Consulting/ConsultWhiteBriefsDS.htm
http://www.tdl.com/~netex/sound/sound.html


 

13 Appendices 

Data Sheets and Specifications 

13.1.1 Transcription of Appendix O in the Commodore 64 
Programmer's Reference Guide 

13.1.1.1 CONCEPT 
The 6581 Sound Interface Device (SID) is a single-chip, 3-voice electronic music 
synthesizer/sound effects generator compatible with the 65XX and similar 
microprocessor families. SID provides wide-range, high-resolution control of pitch 
(frequency), tone color (harmonic content), and dynamics (volume). Specialized 
control circuitry minimizes software overhead, facilitating use in arcade/home video 
games and low-cost musical instruments. 

13.1.1.2 FEATURES 

• 3 TONE OSCILLATORS 
Range: 0-4 kHz  

• 4 WAVEFORMS PER OSCILLATOR 
Triangle, Sawtooth, Variable Pulse, Noise  

• 3 AMPLITUDE MODULATORS 
Range: 48 dB  

• 3 ENVELOPE GENERATORS 
Exponential response 
Attack Rate: 2 ms - 8 s 
Decay Rate: 6 ms - 24 s 
Sustain Level: 0 - peak volume 
Release Rate: 6 ms - 24 s  

• OSCILLATOR SYNCHRONIZATION  
• RING MODULATION  
• PROGRAMMABLE FILTER 

Cutoff range: 30 Hz - 12 kHz 
12 dB/octave Rolloff 
Low pass, Bandpass,High pass, Notch outputs 
Variable Resonance  

• MASTER VOLUME CONTROL  
• 2 A/D POT INTERFACES  
• RANDOM NUMBER/MODULATION GENERATOR  
• EXTERNAL AUDIO INPUT  

13.1.1.3 DESCRIPTION 
The 6581 consists of three synthesizer "voices" which can be used independently or 
in conjunction with each other (or external audiosources) to create complex sounds. 
Each voice consists of a tone oscillator/waveform generator,an envelope generator 
and an amplitudemodulator.  
The tone oscillator produces four waveforms at the selected frequency, with the 
unique harmonic content of each waveform providing simple control of tone color. 

60 



 

The volume dynamics of the oscillator are controlled by the amplitude modulator 
under the direction of the envelope generator. When triggered, the envelope 
generator creates an amplitude envelope with programmable rates of increasing and 
decreasing volume. 
In addition to the three voices, a programmable filter is provided for generating 
complex, dynamic tone colors via subtractive synthesis. 
Please note that the SID is not a FM-based synthesizer, like the Yamaha OPL series 
!!  
 
SID allows the microprocessor to read the changing output of the third oscillator and 
third envelope generator. These outpus can be used as a source of modulation 
information for creating vibrato, frequency/filter sweeps and similar effects. Two 
A/D converters are provided for interfacing SID with potentiometers. These can be 
used for "paddles" in a game environment or as front panel controls in a music 
synthesizer. SID can process external audio signals, allowing multiple SID chips to 
be daisy-chained or mixed in complex polyphonic systems. 

13.1.2 Gravis Ultrasound feature list 
“Wavetable synthesis (16-bit instruments, up to 1 meg of on-board RAM), 
stereo, 
32-channel 16-bit DAC (for playing only, 16-bit recording is an option). 
Sound Blaster compatible through software. 
Roland MT-32 compatible through software. 
8 bit ADC. 
Has a 32 voice WT synthesiser. 
Comes standard with 256kb of memory, upgradable to 1 Mb. 
Includes MIDI/speed compensating joystick port. 
Needs 16 bit ISA slot.” 
(Wyckoff, R. & Cornell Dobaldson, I 
http://www.gamesdomain.com/pcfawq.pcfaq5.html) 

13.1.3 Sound Blaster PCI128 feature list 
PnP 
512K Upgradeable Wave Table: 128-Voice Polyphony 128 instruments, 
10 drums; 20-note/4 operator FM Synthesizer; 
MPU-401 UART Midi; 
Sound Samples: 1MB ROM upgrades to 28MB's. 
Creative 3D Stereo Enhancement Technology for larger sound stage; 
EMU8000 E-mu 3D Effects; 
Reverb, chorus and pan on MIDI channels; 
Includes Stereo, 16-bit, 44.1kHz Inputs and Playback; 
0.5MB of Integrated Sound Font memory. 
(Net Express “Synthesizers and Wave Tables (FM, OPL2/3)” (1996) 
http://www.tdl.com/~netex/sound/sound.html) 
 

13.1.4 MidiMan Audiophile 24/96 feature list 
Applications Include 
24-bit 96 kHz multitrack recording 
MIDI recording and playback 

61 

http://www.tdl.com/~netex/sound/sound.html


 

Digital transfers; Digital mastering 
LP/cassette-to-CD transfers 
Computer-based Home Theater systems 
Computer-based Hi-Fi systems 
Specifications: 
Dynamic Range: D/A 104.0dB (a-weighted), A/D 100.4dB (a-weighted) 
THD: less than 0.002% 
Freq. Response: 22Hz - 22kHz, -0.4,-0.4dB 

13.2 Source Code 

13.2.1 Source code for a VST plugin that has no effect 
#include "AGain.hpp" 
AGain::AGain(audioMasterCallback audioMaster) 
 : AudioEffectX(audioMaster, 1, 1) // 1 program, 1 parameter only 
{ 
 fGain = 1;    // default to 0 dB (FLOAT) 
 setNumInputs(2);  // stereo in 
 setNumOutputs(2);  // stereo out 
 setUniqueID('fork'); // identify 
 canMono();    // makes sense to feed both inputs with 
the same signal 
 canProcessReplacing(); // supports both accumulating and replacing 
output 
 strcpy(programName, "Default"); // default program name 
} 
AGain::~AGain() 
{ 
 // nothing to do here 
} 
void AGain::setProgramName(char *name) 
{ 
 strcpy(programName, name); 
} 
void AGain::getProgramName(char *name) 
{ 
 strcpy(name, programName); 
} 
void AGain::setParameter(long index, float value) 
{ 
 fGain = 0.01*value; 
} 
float AGain::getParameter(long index) 
{ 
 return fGain; 
} 
void AGain::getParameterName(long index, char *label) 
{ 
 strcpy(label, "  Toby_Knob  "); 
} 

62 



 

void AGain::getParameterDisplay(long index, char *text) 
{ 
 dB2string(fGain, text); 
} 
void AGain::getParameterLabel(long index, char *label) 
{ 
 strcpy(label, "   dB   "); 
} 
void AGain::process(float **inputs, float **outputs, long sampleFrames) 
{ 
    float *in1  =  inputs[0]; 
    float *in2  =  inputs[1]; 
    float *out1 = outputs[0]; 
    float *out2 = outputs[1]; 
 
    while(--sampleFrames >= 0) 
    { 
        (*out1++) += (*in1++) ;    // accumulating 
        (*out2++) += (*in2++) ; 
    } 
} 
 double tremolo=0; 
 
void AGain::processReplacing(float **inputs, float **outputs, long 
 sampleFrames) 
 { 
     float *in1  =  inputs[0]; 
     float *in2  =  inputs[1]; 
     float *out1 = outputs[0]; 
     float *out2 = outputs[1]; 
 
 
        while(--sampleFrames >= 0) 
            { 
 
              (*out1++) = (*in1++) ; 
              (*out2++) = (*in2++) ; 
            } 
 
   } 
} 

13.2.2 Source code for a VST plugin that ring modulates the input 
with a sawtooth wave of arbitrary frequency 

 
#include "AGain.hpp" 
AGain::AGain(audioMasterCallback audioMaster) 
 : AudioEffectX(audioMaster, 1, 1) // 1 program, 1 parameter only 
{ 
 fGain = 1;    // default to 0 dB (FLOAT) 

63 



 

 setNumInputs(2);  // stereo in 
 setNumOutputs(2);  // stereo out 
 setUniqueID('fork'); // identify 
 canMono();    // makes sense to feed both inputs with 
the same signal 
 canProcessReplacing(); // supports both accumulating and replacing 
output 
 strcpy(programName, "Default"); // default program name 
} 
AGain::~AGain() 
{ 
 // nothing to do here 
} 
void AGain::setProgramName(char *name) 
{ 
 strcpy(programName, name); 
} 
void AGain::getProgramName(char *name) 
{ 
 strcpy(name, programName); 
} 
 
void AGain::setParameter(long index, float value) 
{ 
 fGain = 0.01*value; 
} 
float AGain::getParameter(long index) 
{ 
 return fGain; 
} 
void AGain::getParameterName(long index, char *label) 
{ 
 strcpy(label, "  Toby_Knob  "); 
} 
void AGain::getParameterDisplay(long index, char *text) 
{ 
 dB2string(fGain, text); 
} 
void AGain::getParameterLabel(long index, char *label) 
{ 
 strcpy(label, "   dB   "); 
} 
void AGain::process(float **inputs, float **outputs, long sampleFrames) 
{ 
    float *in1  =  inputs[0]; 
    float *in2  =  inputs[1]; 
    float *out1 = outputs[0]; 
    float *out2 = outputs[1]; 
 
    while(--sampleFrames >= 0) 

64 



 

    { 
        (*out1++) += (*in1++) ;    // accumulating 
        (*out2++) += (*in2++) ; 
    } 
} 
double tremolo=0; 
void AGain::processReplacing(float **inputs, float **outputs, long 
 sampleFrames) 
 { 
     float *in1  =  inputs[0]; 
     float *in2  =  inputs[1]; 
     float *out1 = outputs[0]; 
     float *out2 = outputs[1]; 
 
  if ( tremolo < 0.1 ) 
       { 
        tremolo=(tremolo+fGain); 
 
        while(--sampleFrames >= 0) 
            { 
 
              (*out1++) = (*in1++) * tremolo *10; 
              (*out2++) = (*in2++) * tremolo *10; 
            } 
       } 
 
  if ( tremolo >= 0.1 ) 
   { 
     tremolo=0; 
 
        while(--sampleFrames >= 0) 
        { 
              (*out1++) = (*in1++) * tremolo; 
              (*out2++) = (*in2++) * tremolo; 
        } 
   } 
} 

13.2.3 Source code allowing user to select specific modulation 
frequencies. 

#include "AGain.hpp" 
AGain::AGain(audioMasterCallback audioMaster) 
 : AudioEffectX(audioMaster, 1, 1) // 1 program, 1 parameter only 
{ 
 fGain = 1;    // default to 0 dB (FLOAT) 
 setNumInputs(2);  // stereo in 
 setNumOutputs(2);  // stereo out 
 setUniqueID('fork'); // identify 
 canMono();    // makes sense to feed both inputs with 
the same signal 

65 



 

 canProcessReplacing(); // supports both accumulating and replacing 
output 
 strcpy(programName, "Default"); // default program name 
} 
AGain::~AGain() 
{ 
 // nothing to do here 
} 
void AGain::setProgramName(char *name) 
{ 
 strcpy(programName, name); 
} 
void AGain::getProgramName(char *name) 
{ 
 strcpy(name, programName); 
} 
void AGain::setParameter(long index, float value) 
{ 
 fGain = 0.01*value; 
} 
 
 
float AGain::getParameter(long index) 
{ 
 return fGain; 
} 
void AGain::getParameterName(long index, char *label) 
{ 
 strcpy(label, "  Toby_Knob  "); 
} 
void AGain::getParameterDisplay(long index, char *text) 
{ 
 dB2string(fGain, text); 
} 
void AGain::getParameterLabel(long index, char *label) 
{ 
 strcpy(label, "   dB   "); 
} 
void AGain::process(float **inputs, float **outputs, long sampleFrames) 
{ 
    float *in1  =  inputs[0]; 
    float *in2  =  inputs[1]; 
    float *out1 = outputs[0]; 
    float *out2 = outputs[1]; 
 
    while(--sampleFrames >= 0) 
    { 
        (*out1++) += (*in1++) ;    // accumulating 
        (*out2++) += (*in2++) ; 
    } 

66 



 

} 
float counter = 0; 
double quarterSec = 0.000011343; 
double topFreq = 1000; 
void AGain::processReplacing(float **inputs, float **outputs, long 
 sampleFrames) 
{  
    float *in1  =  inputs[0]; 
    float *in2  =  inputs[1]; 
    float *out1 = outputs[0]; 
    float *out2 = outputs[1]; 
        while(--sampleFrames >= 0) 
            { 
   counter = (counter + (quarterSec*(topFreq*fGain))); 
   if (counter > 0.5) 
    { 
    counter = 0; 
    } 
              (*out1++) = (*in1++ * counter); 
              (*out2++) = (*in2++ * counter); 
 
 
            } 
} 

13.2.4 Source code implementing LFO modulation frequency control 
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include "ADelay.hpp" 
#include "AEffEditor.hpp" 
//sets the default values 
ADelayProgram::ADelayProgram () 
{ 
 fDelay = 0.5; 
 fFeedBack = 0.5; 
 fOut = 0.75; 
 strcpy (name, "Init"); 
} 
ADelay::ADelay (audioMasterCallback audioMaster) 
 : AudioEffectX (audioMaster, 16, kNumParams) 
{ 
 //sets "size" t0 44100 (1 second) - this is our delay memory 
 size = 10000; 
 // makes the dial make SENSE!!!!!!!!! 
// size = 44100; 
 //a buffer of floats is allocated 
 buffer = new float[size]; 
 programs = new ADelayProgram[numPrograms]; 
 fDelay = fFeedBack = fOut = vu = 0; 

67 



 

 delay = inPos = outPos = 0; 
 if (programs) 
  setProgram (0); 
 setNumInputs (2); 
 setNumOutputs (2); 
 canMono();       ///MAKE IT 
MONO!!!!!!! 
 hasVu (); 
 canProcessReplacing (); 
 setUniqueID ('Kllr');    //MAKE IT UNIQUE!!!!! 
 
 suspend ();  // flush buffer 
} 
ADelay::~ADelay () 
{ 
 if (buffer) 
  delete[] buffer; 
 if (programs) 
  delete[] programs; 
} 
void ADelay::setProgram (long program) 
{ 
 ADelayProgram * ap = &programs[program]; 
 curProgram = program; 
 setParameter (kDelay, ap->fDelay);  
 setParameter (kFeedBack, ap->fFeedBack); 
 setParameter (kOut, ap->fOut); 
} 
void ADelay::setDelay (float fdelay) 
{ 
 long oi; 
 fDelay = fdelay; 
 delay = (long)(fdelay * (float)(size - 1)); 
 programs[curProgram].fDelay = fdelay; 
 oi = inPos - delay;  
 if (oi < 0) 
  oi += size; 
 outPos = oi; 
} 
void ADelay::setProgramName (char *name) 
{ 
 strcpy (programs[curProgram].name, name); 
} 
void ADelay::getProgramName (char *name) 
{ 
 if (!strcmp (programs[curProgram].name, "Init")) 
  sprintf (name, "%s %d", programs[curProgram].name, curProgram + 
1); 
 else 
  strcpy (name, programs[curProgram].name); 

68 



 

} 
void ADelay::suspend () 
{ 
 memset (buffer, 0, size * sizeof (float)); 
} 
float ADelay::getVu () 
{ 
 float cvu = vu; 
 vu = 0; 
 return cvu; 
} 
void ADelay::setParameter (long index, float value) 
{ 
 ADelayProgram * ap = &programs[curProgram]; 
 switch (index) 
 { 
  case kDelay :    setDelay (value); break; 
  case kFeedBack : fFeedBack = ap->fFeedBack = value; break; 
  case kOut :      fOut = ap->fOut = value; break; 
 } 
 if (editor) 
  editor->postUpdate (); 
} 
float ADelay::getParameter (long index) 
{ 
 float v = 0; 
 switch (index) 
 { 
  case kDelay :    v = fDelay; break; 
  case kFeedBack : v = fFeedBack; break; 
  case kOut :      v = fOut; break; 
 } 
 return v; 
} 
void ADelay::getParameterName (long index, char *label) 
{ 
 switch (index) 
 { 
  case kDelay :    strcpy (label, " Root-Pitch  "); break; 
  case kFeedBack : strcpy (label, "Speed"); break; 
  case kOut :      strcpy (label, " Amount "); break; 
 } 
} 
void ADelay::getParameterDisplay (long index, char *text) 
{ 
 switch (index) 
 { 
  case kDelay :    long2string (delay, text); break; 
  case kFeedBack : float2string (fFeedBack, text); break; 
  case kOut :      float2string (fOut, text); break; 

69 



 

 } 
} 
void ADelay::getParameterLabel (long index, char *label) 
{ 
 switch (index) 
 { 
  case kDelay :    strcpy (label, "- "); break; 
  case kFeedBack : strcpy (label, " amount "); break; 
  case kOut :      strcpy (label, "   dB   "); break; 
 } 
} 
float counter = 0; 
float countertoo = 0; 
//float counterthree = 0; 
double quarterSec = (0.000570162/4); 
double topFreq = 10000; 
double LFOFreq = 10; 
void ADelay::process(float **inputs, float **outputs, long sampleFrames) 
{ 
    float *in1  =  inputs[0]; 
    float *in2  =  inputs[1]; 
    float *out1 = outputs[0]; 
    float *out2 = outputs[1]; 
    while(--sampleFrames >= 0) 
    { 
        (*out1++) += (*in1++) ;    // accumulating 
        (*out2++) += (*in2++) ; 
    } 
} 
void ADelay::processReplacing(float **inputs, float **outputs, long 
 sampleFrames) 
{  
    float *in1  =  inputs[0]; 
    float *in2  =  inputs[1]; 
    float *out1 = outputs[0]; 
    float *out2 = outputs[1]; 
        while(--sampleFrames >= 0) 
            { 
   countertoo = (countertoo + 
(quarterSec*(LFOFreq*fFeedBack))); 
   if (countertoo > (2*3.14159)) 
    { 
    //to cause aliases: 
    //counter = 0; 
    //To solve aliases: 
    countertoo -= (2*3.14159); 
    } 
   double nuMod = sin(countertoo); 
   counter = (counter + 
(quarterSec*(topFreq*fDelay)+(nuMod*(fOut/8)))); 

70 



 

   if (counter > (2*3.14159)) 
    { 
    //to cause aliases: 
    //counter = 0; 
    //To solve aliases: 
    counter -= (2*3.14159); 
    } 
   double sinMod = sin(counter); 
   (*out1++) = ((*in1++)*(sinMod/2)); 
   (*out2++) = ((*in2++)*(sinMod/2)); 
//   (*out1++) = (sinMod); 
//   (*out2++) = (sinMod); 
   } 
} 

13.3 Usability Research Website Content 

KillerRinger 
This is a free VST plugin 

Written by Toby Newman. 
 

It will make your sounds turn funky and crazy. 
Please try it out, 

Distribute this URL, 
and help me by sending comments to: asktoby@hotmail.com 

 
Click here to download the VST plugin  

13.4 User Feedback from Usability Research Website 

13.4.1 Vesa Norilo 
Well, I did. Just forgot to test it! Sorry. But here goes now. 

It's neatly done, all the parameters have nice control feel with no crackling or stuff. 
Did you use some kind of interpolation to glide between successive parameter 
values? The sound is also clean and smooth. 

It seems to be a ring modulator where an LFO controls the pitch of the other ring 
modulation source. I'm a bit mystified as to why the amount control is labeled in 
decibel if it is in fact the LFO amplitude as it seems to be. 

Have you tried other waveforms beside sine? Square wave gives some really crunchy 
effects. A friend of mine has implemented bitcrusher, ring modulator and spectrum 
flipper in one plugin, and it sounds positively unbelievably weird :-) 

Vesa 

13.4.2 Igor Yael 
O yes ! I've dw it , and I like it :o) I like the sound ... 
very artistic sound :o) 

71 

mailto:asktoby@hotmail.com?subject=KillerRinger%20Feedback


 

are u thinking of a graphiX interface ? 
Igor 

13.4.3 Paul Stimpson 
ooh i have loaded it up in orion, ooh it sounds all wibbly and metallic – wibblytastic! 
i cant stop making bird noises now i've added reverb 
Paul 

13.4.4 Paul Random99 
hi toby 
yup, d/l'd your plug-in and it works well in audiomulch (a nice effect- 
given the title i was half expecting a run of the mill ring modulator ;-) 
Paul 

72 


	Individual Project Module
	List of Figures or Illustrations
	Notation
	Algorithm
	API
	CPU
	Digital Audio Data
	*.dll file
	DSP
	EQ
	FM
	GUI
	IBM
	ISA
	MIDI
	Modulation
	Motherboard
	MSDOS
	OPL
	O/S
	Pascal
	PC
	PCI
	PIT
	RAM
	Ring Modulation
	ROM
	Shareware
	SDK
	SID
	Subtractive synthesis
	UART
	Virtual Memory
	Wavetable
	While Loop

	Introduction
	Overview
	Literature Review
	Methods of Investigation

	Terms of Reference
	Introduction
	Limitations

	Aims of the Investigation

	Conduct of the Study
	Documents Collected

	Chapter 1 - Documentation of the technological developments in music-oriented and computer-based audio signal processing to date that have allowed current techniques to be developed
	
	“Music1” - The first music software
	Transistor technology brings faster, smaller computers
	SID chips in the Commodore C64/128
	International Business Machines (IBM)
	The PC Speaker
	Soundcards
	Adlib Music Synthesiser
	Computer-based music sequencer software packages
	Roland MT-32
	The MPU-401
	Linear Arithmetic (LA) synthesis

	Increased storage ability leads to more widespread use of digital audio
	SoundBlaster
	MOD Format

	Digital Audio becomes 16 bit
	The SoundBlaster 16
	Multisampling



	Wavetable Synthesis
	Multitasking and the audio software suite

	Mellosoftron and the Software Wavetable.
	
	
	Drawbacks
	Direct Music



	Virtual Synthesisers
	Offline Virtual Synthesis
	SimSynth
	Drawbacks of the offline model

	Real-Time Virtual Synthesis
	VAZ


	Host – Based systems


	Chapter 2 - Use the Steinberg SDK to create an advanced ring modulating plugin for use in host-based systems
	SDK availability
	Plugin Foundations
	Creating a *.dll
	Inheriting Elements of the SDK
	GUI

	Development of proposed applications
	Create a plugin that has no effect.
	The process() and processReplacing() functions
	Discussion of processReplacing() Source code for a plugin with no effect

	Audio representation within the SDK
	Create a sawtooth ring modulator
	
	Software planning – Operation flow charts of the 


	Replacement of the sawtooth modulator with a sine wave
	Add further control for the user
	Details of miscellaneous techniques and additions to code
	Enumerating new GUI controls
	Labelling variables in the GUI
	Unique names



	Analysis and Discussion
	Spectrograph Testing
	Efficiency of code
	Usability Research – Comments

	Implications of Change
	
	Backward compatibility
	Software synthesis begins to replace it’s hardwar


	Conclusions
	How does the practical element in Chapter 2 successfully demonstrate the core benefits of many of the new technologies discussed in the Chapter 1?

	Recommendations
	References
	
	Literature References
	Internet References


	Appendices
	Data Sheets and Specifications
	Transcription of Appendix O in the Commodore 64 Programmer's Reference Guide
	CONCEPT
	FEATURES
	DESCRIPTION

	Gravis Ultrasound feature list
	Sound Blaster PCI128 feature list
	MidiMan Audiophile 24/96 feature list

	Source Code
	Source code for a VST plugin that has no effect
	Source code for a VST plugin that ring modulates the input with a sawtooth wave of arbitrary frequency
	Source code allowing user to select specific modulation frequencies.
	Source code implementing LFO modulation frequency control

	Usability Research Website Content
	User Feedback from Usability Research Website
	Vesa Norilo
	Igor Yael
	Paul Stimpson
	Paul Random99



